期刊文献+
共找到1,098篇文章
< 1 2 55 >
每页显示 20 50 100
A Multi-Objective Deep Reinforcement Learning Algorithm for Computation Offloading in Internet of Vehicles
1
作者 Junjun Ren Guoqiang Chen +1 位作者 Zheng-Yi Chai Dong Yuan 《Computers, Materials & Continua》 2026年第1期2111-2136,共26页
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain... Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively. 展开更多
关键词 Deep reinforcement learning internet of vehicles multi-objective optimization cloud-edge computing computation offloading service caching
在线阅读 下载PDF
Random State Approach to Quantum Computation of Electronic-Structure Properties
2
作者 Yiran Bai Feng Xiong Xueheng Kuang 《Chinese Physics Letters》 2026年第1期89-104,共16页
Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and v... Classical computation of electronic properties in large-scale materials remains challenging.Quantum computation has the potential to offer advantages in memory footprint and computational scaling.However,general and viable quantum algorithms for simulating large-scale materials are still limited.We propose and implement random-state quantum algorithms to calculate electronic-structure properties of real materials.Using a random state circuit on a small number of qubits,we employ real-time evolution with first-order Trotter decomposition and Hadamard test to obtain electronic density of states,and we develop a modified quantum phase estimation algorithm to calculate real-space local density of states via direct quantum measurements.Furthermore,we validate these algorithms by numerically computing the density of states and spatial distributions of electronic states in graphene,twisted bilayer graphene quasicrystals,and fractal lattices,covering system sizes from hundreds to thousands of atoms.Our results manifest that the random-state quantum algorithms provide a general and qubit-efficient route to scalable simulations of electronic properties in large-scale periodic and aperiodic materials. 展开更多
关键词 periodic materials random state circuit random state quantum algorithms electronic structure properties density states aperiodic materials quantum algorithms quantum computation
原文传递
Computation and wireless resource management in 6G space-integrated-ground access networks 被引量:1
3
作者 Ning Hui Qian Sun +2 位作者 Lin Tian Yuanyuan Wang Yiqing Zhou 《Digital Communications and Networks》 2025年第3期768-777,共10页
In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this neces... In 6th Generation Mobile Networks(6G),the Space-Integrated-Ground(SIG)Radio Access Network(RAN)promises seamless coverage and exceptionally high Quality of Service(QoS)for diverse services.However,achieving this necessitates effective management of computation and wireless resources tailored to the requirements of various services.The heterogeneity of computation resources and interference among shared wireless resources pose significant coordination and management challenges.To solve these problems,this work provides an overview of multi-dimensional resource management in 6G SIG RAN,including computation and wireless resource.Firstly it provides with a review of current investigations on computation and wireless resource management and an analysis of existing deficiencies and challenges.Then focusing on the provided challenges,the work proposes an MEC-based computation resource management scheme and a mixed numerology-based wireless resource management scheme.Furthermore,it outlines promising future technologies,including joint model-driven and data-driven resource management technology,and blockchain-based resource management technology within the 6G SIG network.The work also highlights remaining challenges,such as reducing communication costs associated with unstable ground-to-satellite links and overcoming barriers posed by spectrum isolation.Overall,this comprehensive approach aims to pave the way for efficient and effective resource management in future 6G networks. 展开更多
关键词 Space-integrated-ground Radio access network MEC-based computation resource management Mixed numerology-based wireless resource management
在线阅读 下载PDF
In an Ocean or a River:Bilinear Auto-Backlund Transformations and Similarity Reductions on an Extended Time-Dependent(3+1)-Dimensional Shallow Water Wave Equation 被引量:1
4
作者 GAO Xin-yi 《China Ocean Engineering》 2025年第1期160-165,共6页
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic... With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation. 展开更多
关键词 OCEAN RIVER extended time-dependent(3+1)-dimensional shallow water wave equation bilinear auto-Bäcklund transformation similarity reduction symbolic computation
在线阅读 下载PDF
暨南大学刘逸课题组在IEEE S&P 2025发表成果
5
作者 《信息网络安全》 北大核心 2025年第8期1326-1326,共1页
近日,暨南大学网络空间安全学院刘逸课题组在第46届安全与隐私研讨会IEEE S&P 2025上发表题为“Highly Efficient Actively Secure Two-Party Computation with One-Bit Advantage Bound”的研究论文。该成果由暨南大学网络空间安... 近日,暨南大学网络空间安全学院刘逸课题组在第46届安全与隐私研讨会IEEE S&P 2025上发表题为“Highly Efficient Actively Secure Two-Party Computation with One-Bit Advantage Bound”的研究论文。该成果由暨南大学网络空间安全学院教师刘逸、教授赖俊祚、教授杨安家、教授翁健与香港大学、南方科技大学等研究团队合作完成,暨南大学为第一单位与通信单位。安全两方计算(Secure Two-Party Computation)是密码学中重要的研究方向,可以让两个互不信任的参与者在保护各自输入隐私的情况下共同完成计算。 展开更多
关键词 Secure Two-Party Computation
在线阅读 下载PDF
Privacy-preserving computation meets quantum computing:A scoping review
6
作者 Aitor Gómez-Goiri Iñaki Seco-Aguirre +1 位作者 Oscar Lage Alejandra Ruiz 《Digital Communications and Networks》 2025年第6期1707-1721,共15页
Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely... Privacy-Preserving Computation(PPC)comprises the techniques,schemes and protocols which ensure privacy and confidentiality in the context of secure computation and data analysis.Most of the current PPC techniques rely on the complexity of cryptographic operations,which are expected to be efficiently solved by quantum computers soon.This review explores how PPC can be built on top of quantum computing itself to alleviate these future threats.We analyze quantum proposals for Secure Multi-party Computation,Oblivious Transfer and Homomorphic Encryption from the last decade focusing on their maturity and the challenges they currently face.Our findings show a strong focus on purely theoretical works,but a rise on the experimental consideration of these techniques in the last 5 years.The applicability of these techniques to actual use cases is an underexplored aspect which could lead to the practical assessment of these techniques. 展开更多
关键词 Quantum computing Privacy-preserving computation Oblivious transfer Secure multi-party computation Homomorphic encryption Scoping review
在线阅读 下载PDF
Peakons and Pseudo-Peakons of Higher Order b-Family Equations
7
作者 Si-Yu Zhu Ruo-Xia Yao +1 位作者 De-Xing Kong Sen-Yue Lou 《Chinese Physics Letters》 2025年第6期1-8,共8页
This paper explores the rich structure of peakon and pseudo-peakon solutions for a class of higher-order b-family equations,referred to as the J-th b-family(J-bF)equations.We propose several conjectures concerning the... This paper explores the rich structure of peakon and pseudo-peakon solutions for a class of higher-order b-family equations,referred to as the J-th b-family(J-bF)equations.We propose several conjectures concerning the weak solutions of these equations,including a b-independent pseudo-peakon solution,a b-independent peakon solution,and a b-dependent peakon solution.These conjectures are analytically verified for J≤14 and/or J≤9 using the symbolic computation system MAPLE,which includes a built-in definition of the higher-order derivatives of the sign function.The b-independent pseudo-peakon solution is a 3rd-order pseudo-peakon for general arbitrary constants,with higher-order pseudo-peakons derived under specific parameter constraints.Additionally,we identify both b-independent and b-dependent peakon solutions,highlighting their distinct properties and the nuanced relationship between the parameters b and J.The existence of these solutions underscores the rich dynamical structure of the J-bF equations and generalizes previous results for lower-order equations.Future research directions include higher-order generalizations,rigorous proofs of the conjectures,interactions between different types of peakons and pseudo-peakons,stability analysis,and potential physical applications.These advancements significantly contribute to the understanding of peakon systems and their broader implications in mathematics and physics. 展开更多
关键词 stability analysis higher order b family equations physical applications symbolic computation system symbolic computation dynamical structure weak solutions peakons
原文传递
Observer-Dependence in P vs NP
8
作者 Logan Nye 《Journal of Modern Physics》 2025年第1期6-51,共46页
We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexit... We present a new perspective on the P vs NP problem by demonstrating that its answer is inherently observer-dependent in curved spacetime, revealing an oversight in the classical formulation of computational complexity theory. By incorporating general relativistic effects into complexity theory through a gravitational correction factor, we prove that problems can transition between complexity classes depending on the observer’s reference frame and local gravitational environment. This insight emerges from recognizing that the definition of polynomial time implicitly assumes a universal time metric, an assumption that breaks down in curved spacetime due to gravitational time dilation. We demonstrate the existence of gravitational phase transitions in problem complexity, where an NP-complete problem in one reference frame becomes polynomially solvable in another frame experiencing extreme gravitational time dilation. Through rigorous mathematical formulation, we establish a gravitationally modified complexity theory that extends classical complexity classes to incorporate observer-dependent effects, leading to a complete framework for understanding how computational complexity transforms across different spacetime reference frames. This finding parallels other self-referential insights in mathematics and physics, such as Gödel’s incompleteness theorems and Einstein’s relativity, suggesting a deeper connection between computation, gravitation, and the nature of mathematical truth. 展开更多
关键词 COMPLEXITY Computation Observer Theory GRAVITATION Information CRITICALITY
在线阅读 下载PDF
On Privacy-Preserved Machine Learning Using Secure Multi-Party Computing:Techniques and Trends
9
作者 Oshan Mudannayake Amila Indika +2 位作者 Upul Jayasinghe Gyu MyoungLee Janaka Alawatugoda 《Computers, Materials & Continua》 2025年第11期2527-2578,共52页
The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches l... The rapid adoption of machine learning in sensitive domains,such as healthcare,finance,and government services,has heightened the need for robust,privacy-preserving techniques.Traditional machine learning approaches lack built-in privacy mechanisms,exposing sensitive data to risks,which motivates the development of Privacy-Preserving Machine Learning(PPML)methods.Despite significant advances in PPML,a comprehensive and focused exploration of Secure Multi-Party Computing(SMPC)within this context remains underdeveloped.This review aims to bridge this knowledge gap by systematically analyzing the role of SMPC in PPML,offering a structured overviewof current techniques,challenges,and future directions.Using a semi-systematicmapping studymethodology,this paper surveys recent literature spanning SMPC protocols,PPML frameworks,implementation approaches,threat models,and performance metrics.Emphasis is placed on identifying trends,technical limitations,and comparative strengths of leading SMPC-based methods.Our findings reveal thatwhile SMPCoffers strong cryptographic guarantees for privacy,challenges such as computational overhead,communication costs,and scalability persist.The paper also discusses critical vulnerabilities,practical deployment issues,and variations in protocol efficiency across use cases. 展开更多
关键词 CRYPTOGRAPHY data privacy machine learning multi-party computation PRIVACY SMPC PPML
在线阅读 下载PDF
Efficient and fine-grained access control with fully-hidden policies for cloud-enabled IoT
10
作者 Qi Li Gaozhan Liu +4 位作者 Qianqian Zhang Lidong Han Wei Chen Rui Li Jinbo Xiong 《Digital Communications and Networks》 2025年第2期473-481,共9页
Ciphertext-Policy Attribute-Based Encryption(CP-ABE)enables fine-grained access control on ciphertexts,making it a promising approach for managing data stored in the cloud-enabled Internet of Things.But existing schem... Ciphertext-Policy Attribute-Based Encryption(CP-ABE)enables fine-grained access control on ciphertexts,making it a promising approach for managing data stored in the cloud-enabled Internet of Things.But existing schemes often suffer from privacy breaches due to explicit attachment of access policies or partial hiding of critical attribute content.Additionally,resource-constrained IoT devices,especially those adopting wireless communication,frequently encounter affordability issues regarding decryption costs.In this paper,we propose an efficient and fine-grained access control scheme with fully hidden policies(named FHAC).FHAC conceals all attributes in the policy and utilizes bloom filters to efficiently locate them.A test phase before decryption is applied to assist authorized users in finding matches between their attributes and the access policy.Dictionary attacks are thwarted by providing unauthorized users with invalid values.The heavy computational overhead of both the test phase and most of the decryption phase is outsourced to two cloud servers.Additionally,users can verify the correctness of multiple outsourced decryption results simultaneously.Security analysis and performance comparisons demonstrate FHAC's effectiveness in protecting policy privacy and achieving efficient decryption. 展开更多
关键词 Access control Policy hiding Verifiable outsourced computation CLOUD IOT
在线阅读 下载PDF
Secure and Privacy-Preserving Cross-Departmental Computation Framework Based on BFV and Blockchain
11
作者 Peng Zhao Yu Du 《Journal of Electronic Research and Application》 2025年第6期207-217,共11页
As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-... As the demand for cross-departmental data collaboration continues to grow,traditional encryption methods struggle to balance data privacy with computational efficiency.This paper proposes a cross-departmental privacy-preserving computation framework based on BFV homomorphic encryption,threshold decryption,and blockchain technology.The proposed scheme leverages homomorphic encryption to enable secure computations between sales,finance,and taxation departments,ensuring that sensitive data remains encrypted throughout the entire process.A threshold decryption mechanism is employed to prevent single-point data leakage,while blockchain and IPFS are integrated to ensure verifiability and tamper-proof storage of computation results.Experimental results demonstrate that with 5,000 sample data entries,the framework performs efficiently and is highly scalable in key stages such as sales encryption,cost calculation,and tax assessment,thereby validating its practical feasibility and security. 展开更多
关键词 Homomorphic encryption Zero-knowledge proof Blockchain Cross-departmental privacy-preserving computation
在线阅读 下载PDF
A verifiable EVM-based cross-language smart contract implementation scheme for matrix calculation
12
作者 Yunhua He Yigang Yang +4 位作者 Chao Wang Anke Xie Li Ma Bin Wu Yongdong Wu 《Digital Communications and Networks》 2025年第2期432-441,共10页
The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses,which involve the calculation of complex functions,such as matrix operations.However,com... The wide application of smart contracts allows industry companies to implement some complex distributed collaborative businesses,which involve the calculation of complex functions,such as matrix operations.However,complex functions such as matrix operations are difficult to implement on Ethereum Virtual Machine(EVM)-based smart contract platforms due to their distributed security environment limitations.Existing off-chain methods often result in a significant reduction in contract execution efficiency,thus a platform software development kit interface implementation method has become a feasible way to reduce overheads,but this method cannot verify operation correctness and may leak sensitive user data.To solve the above problems,we propose a verifiable EVM-based smart contract cross-language implementation scheme for complex operations,especially matrix operations,which can guarantee operation correctness and user privacy while ensuring computational efficiency.In this scheme,a verifiable interaction process is designed to verify the computation process and results,and a matrix blinding technology is introduced to protect sensitive user data in the calculation process.The security analysis and performance tests show that the proposed scheme can satisfy the correctness and privacy of the cross-language implementation of smart contracts at a small additional efficiency cost. 展开更多
关键词 Smart contract Blockchain Cross-language programming Bilinear pairing Publicly verifiable computation
在线阅读 下载PDF
Coded Distributed Computing for System with Stragglers
13
作者 Xu Jiasheng Kang Huquan +5 位作者 Zhang Haonan Fu Luoyi Long Fei Cao Xinde Wang Xinbing Zhou Chenghu 《China Communications》 2025年第8期298-313,共16页
Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing be... Distributed computing is an important topic in the field of wireless communications and networking,and its high efficiency in handling large amounts of data is particularly noteworthy.Although distributed computing benefits from its ability of processing data in parallel,the communication burden between different servers is incurred,thereby the computation process is detained.Recent researches have applied coding in distributed computing to reduce the communication burden,where repetitive computation is utilized to enable multicast opportunities so that the same coded information can be reused across different servers.To handle the computation tasks in practical heterogeneous systems,we propose a novel coding scheme to effectively mitigate the "straggling effect" in distributed computing.We assume that there are two types of servers in the system and the only difference between them is their computational capabilities,the servers with lower computational capabilities are called stragglers.Given any ratio of fast servers to slow servers and any gap of computational capabilities between them,we achieve approximately the same computation time for both fast and slow servers by assigning different amounts of computation tasks to them,thus reducing the overall computation time.Furthermore,we investigate the informationtheoretic lower bound of the inter-communication load and show that the lower bound is within a constant multiplicative gap to the upper bound achieved by our scheme.Various simulations also validate the effectiveness of the proposed scheme. 展开更多
关键词 coded computation communication load distributed computing straggling effect
在线阅读 下载PDF
Computational and experimental analysis of flow velocity and complex vortex formation around a group of bridge piers
14
作者 Nima Ikani Jaan H.Pu +4 位作者 Prashanth Reddy Hanmaiahgari Bimlesh Kumar Ebrahim Hamid Hussein Al-Qadami Mohd Adib Mohammad Razi Shu-yan Zang 《Water Science and Engineering》 2025年第2期247-258,共12页
In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with t... In this study,the flow characteristics around a group of three piers arranged in tandem were investigated both numerically and experimentally.The simulation utilised the volume of fluid(VOF)model in conjunction with the k–ɛmethod(i.e.,for flow turbulence representations),implemented through the ANSYS FLUENT software,to model the free-surface flow.The simulation results were validated against laboratory measurements obtained using an acoustic Doppler velocimeter.The comparative analysis revealed discrepancies between the simulated and measured maximum velocities within the investigated flow field.However,the numerical results demonstrated a distinct vortex-induced flow pattern following the first pier and throughout the vicinity of the entire pier group,which aligned reasonably well with experimental data.In the heavily narrowed spaces between the piers,simulated velocity profiles were overestimated in the free-surface region and underestimated in the areas near the bed to the mid-stream when compared to measurements.These discrepancies diminished away from the regions with intense vortices,indicating that the employed model was capable of simulating relatively less disturbed flow turbulence.Furthermore,velocity results from both simulations and measurements were compared based on velocity distributions at three different depth ratios(0.15,0.40,and 0.62)to assess vortex characteristic around the piers.This comparison revealed consistent results between experimental and simulated data.This research contributes to a deeper understanding of flow dynamics around complex interactive pier systems,which is critical for designing stable and sustainable hydraulic structures.Furthermore,the insights gained from this study provide valuable information for engineers aiming to develop effective strategies for controlling scour and minimizing destructive vortex effects,thereby guiding the design and maintenance of sustainable infrastructure. 展开更多
关键词 CFD computation ADV measurements Pier group Flow turbulence Velocity profile
在线阅读 下载PDF
Stochastic Fractal Search:A Decade Comprehensive Review on Its Theory,Variants,and Applications
15
作者 Mohammed A.El-Shorbagy Anas Bouaouda +1 位作者 Laith Abualigah Fatma A.Hashim 《Computer Modeling in Engineering & Sciences》 2025年第3期2339-2404,共66页
With the rapid advancements in technology and science,optimization theory and algorithms have become increasingly important.A wide range of real-world problems is classified as optimization challenges,and meta-heurist... With the rapid advancements in technology and science,optimization theory and algorithms have become increasingly important.A wide range of real-world problems is classified as optimization challenges,and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains,such as machine learning,process control,and engineering design,showcasing their capability to address complex optimization problems.The Stochastic Fractal Search(SFS)algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials.Since its introduction by Hamid Salimi in 2015,SFS has garnered significant attention from researchers and has been applied to diverse optimization problems acrossmultiple disciplines.Its popularity can be attributed to several factors,including its simplicity,practical computational efficiency,ease of implementation,rapid convergence,high effectiveness,and ability to address singleandmulti-objective optimization problems,often outperforming other established algorithms.This review paper offers a comprehensive and detailed analysis of the SFS algorithm,covering its standard version,modifications,hybridization,and multi-objective implementations.The paper also examines several SFS applications across diverse domains,including power and energy systems,image processing,machine learning,wireless sensor networks,environmental modeling,economics and finance,and numerous engineering challenges.Furthermore,the paper critically evaluates the SFS algorithm’s performance,benchmarking its effectiveness against recently published meta-heuristic algorithms.In conclusion,the review highlights key findings and suggests potential directions for future developments and modifications of the SFS algorithm. 展开更多
关键词 Meta-heuristic algorithms stochastic fractal search evolutionary computation engineering applications swarm intelligence optimization
在线阅读 下载PDF
Nonlinear waves for a variable-coefficient modified Kadomtsev-Petviashvili system in plasma physics and electrodynamics
16
作者 Guang-Mei Wei Yu-Xin Song +1 位作者 Tian-Chi Xing Shu Miao 《Communications in Theoretical Physics》 2025年第1期23-34,共12页
In this paper,a variable-coefficient modified Kadomtsev-Petviashvili(vcm KP)system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and ... In this paper,a variable-coefficient modified Kadomtsev-Petviashvili(vcm KP)system is investigated by modeling the propagation of electromagnetic waves in an isotropic charge-free infinite ferromagnetic thin film and nonlinear waves in plasma physics and electrodynamics.Painlevéanalysis is given out,and an auto-B?cklund transformation is constructed via the truncated Painlevéexpansion.Based on the auto-B?cklund transformation,analytic solutions are given,including the solitonic,periodic and rational solutions.Using the Lie symmetry approach,infinitesimal generators and symmetry groups are presented.With the Lagrangian,the vcm KP equation is shown to be nonlinearly self-adjoint.Moreover,conservation laws for the vcm KP equation are derived by means of a general conservation theorem.Besides,the physical characteristics of the influences of the coefficient parameters on the solutions are discussed graphically.Those solutions have comprehensive implications for the propagation of solitary waves in nonuniform backgrounds. 展开更多
关键词 modified Kadomtsev-Petviashvili equation Lie symmetry optimal system nonlinear self-adjointness conservation law symbolic computation
原文传递
Investigation of TWIP/TRIP Effects in the CrCoNiFe System Using a High-Throughput CALPHAD Approach
17
作者 Jize Zhang T.P.C.Klaver +2 位作者 Songge Yang Brajendra Mishra Yu Zhong 《Computers, Materials & Continua》 2025年第9期4299-4311,共13页
Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.H... Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.However,the vast complexity of multicomponent systems poses a major challenge for identifying promising candidates through conventional experimental or computational methods.A high-throughput CALPHAD framework is developed to identify compositions with potential TWIP/TRIP behaviors in the Cr-Co-Ni and Cr-Co-Ni-Fe systems through systematic screening of stacking fault energy(SFE),FCC phase stability,and FCC-to-HCP transition temperatures(T0).The approach combines TC-Python automation with parallel Gibbs energy calculations across hundreds of thousands of compositions,enabling efficient extraction of metastable FCC-dominant alloys.The high-throughput results find 214 compositions with desired properties from 160,000 candidates.Detailed analysis of the Gibbs energy distributions,phase fraction trends,and temperature-dependent SFE evolution reveals critical insights into the thermodynamic landscape governing plasticity mechanisms in HEAs.The results show that only a narrow region of the compositional space satisfies all screening criteria,emphasizing the necessity of an integrated approach.The screened compositions and trends provide a foundation for targeted experimental validation.Furthermore,this work demonstrates a scalable,composition-resolved strategy for predicting deformation mechanisms in multicomponent alloys and offers a blueprint for integrating thermodynamic screening with mechanistic understanding in HEA design. 展开更多
关键词 High entropy alloys CALPHAD high-throughput computation TWIP/TRIP
在线阅读 下载PDF
Single Metal-Embedded Nitrogen Heterocycle Aromatic Catalysts for Efficient and Selective Two-Electron Water Electrolysis Toward Hydrogen Peroxide
18
作者 Pengting Sun Jiaxiang Qiu +5 位作者 Jinlong Wu Daoxiong Wu Ruirui Wang Xiaohong Yan Yangyang Wan Xiaojun Wu 《Carbon Energy》 2025年第8期125-136,共12页
Hydrogen peroxide(H_(2)O_(2))is an eco-friendly chemical with widespread industrial applications.However,the commercial anthraquinone process for H_(2)O_(2) production is energy-intensive and environmentally harmful,h... Hydrogen peroxide(H_(2)O_(2))is an eco-friendly chemical with widespread industrial applications.However,the commercial anthraquinone process for H_(2)O_(2) production is energy-intensive and environmentally harmful,highlighting the need for more sustainable alternatives.The electrochemical production of H_(2)O_(2) via the two-electron water oxidation reaction(2e^(−)WOR)presents a promising route but is often hindered by low efficiency and selectivity,due to the competition with the oxygen evolution reaction.In this study,we employed high-throughput computational screening and microkinetic modeling to design a series of efficient 2e^(−)WOR electrocatalysts from a library of 240 single-metal-embedded nitrogen heterocycle aromatic molecules(M-NHAMs).These catalysts,primarily comprising post-transition metals,such as Cu,Ni,Zn,and Pd,exhibit high activity for H_(2)O_(2) conversion with a limiting potential approaching the optimal value of 1.76 V.Additionally,they exhibit excellent selectivity,with Faradaic efficiencies exceeding 80%at overpotentials below 300 mV.Structure-performance analysis reveals that the d-band center and magnetic moment of the metal center correlated strongly with the oxygen adsorption free energy(ΔGO*),suggesting these parameters as key catalytic descriptors for efficient screening and performance optimization.This study contributes to the rational design of highly efficient and selective electrocatalysts for electrochemical production of H_(2)O_(2),offering a sustainable solution for green energy and industrial applications. 展开更多
关键词 high-throughput computation hydrogen peroxide microkinetic modeling single-atom catalyst two-electron water oxidation
在线阅读 下载PDF
A hyperelliptic curve-based authenticated key agreement scheme for unmanned aerial vehicles in cross-domain environments
19
作者 Muhammad Asghar KHAN Insaf ULLAH +2 位作者 Haralambos MOURATIDIS Abdulmajeed ALQHATANI Pascal LORENZ 《Chinese Journal of Aeronautics》 2025年第10期245-259,共15页
Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunatel... Unmanned Aerial Vehicles(UAVs)are increasingly recognized for their pivotal role in military and civilian applications,serving as essential technology for transmitting,evaluating,and gathering information.Unfortunately,this crucial process often occurs through unsecured wireless connections,exposing it to numerous cyber-physical attacks.Furthermore,UAVs’limited onboard computing resources make it challenging to perform complex cryptographic operations.The main aim of constructing a cryptographic scheme is to provide substantial security while reducing the computation and communication costs.This article introduces an efficient and secure cross-domain Authenticated Key Agreement(AKA)scheme that uses Hyperelliptic Curve Cryptography(HECC).The HECC,a modified version of ECC with a smaller key size of 80 bits,is well-suited for use in UAVs.In addition,the proposed scheme is employed in a cross-domain environment that integrates a Public Key Infrastructure(PKI)at the receiving end and a Certificateless Cryptosystem(CLC)at the sending end.Integrating CLC with PKI improves network security by restricting the exposure of encryption keys only to the message’s sender and subsequent receiver.A security study employing ROM and ROR models,together with a comparative performance analysis,shows that the proposed scheme outperforms comparable existing schemes in terms of both efficiency and security. 展开更多
关键词 Computation cost Cross-domain authentication Hyperelliptic curve cryptography Key agreement ROM ROR SECURITY Unmanned aerial vehicles
原文传递
Machine learning-encoded multiscale modelling and Bayesian optimization framework to design programmable metamaterials
20
作者 Yizhe Liu Xiaoyan Li +1 位作者 Yuli Chen Bin Ding 《Acta Mechanica Sinica》 2025年第1期226-245,共20页
Advanced programmable metamaterials with heterogeneous microstructures have become increasingly prevalent in scientific and engineering disciplines attributed to their tunable properties.However,exploring the structur... Advanced programmable metamaterials with heterogeneous microstructures have become increasingly prevalent in scientific and engineering disciplines attributed to their tunable properties.However,exploring the structure-property relationship in these materials,including forward prediction and inverse design,presents substantial challenges.The inhomogeneous microstructures significantly complicate traditional analytical or simulation-based approaches.Here,we establish a novel framework that integrates the machine learning(ML)-encoded multiscale computational method for forward prediction and Bayesian optimization for inverse design.Unlike prior end-to-end ML methods limited to specific problems,our framework is both load-independent and geometry-independent.This means that a single training session for a constitutive model suffices to tackle various problems directly,eliminating the need for repeated data collection or training.We demonstrate the efficacy and efficiency of this framework using metamaterials with designable elliptical holes or lattice honeycombs microstructures.Leveraging accelerated forward prediction,we can precisely customize the stiffness and shape of metamaterials under diverse loading scenarios,and extend this capability to multi-objective customization seamlessly.Moreover,we achieve topology optimization for stress alleviation at the crack tip,resulting in a significant reduction of Mises stress by up to 41.2%and yielding a theoretical interpretable pattern.This framework offers a general,efficient and precise tool for analyzing the structure-property relationships of novel metamaterials. 展开更多
关键词 Artificial neural network Multiscale computation Bayesian optimization Inverse design Programmable metamaterials
原文传递
上一页 1 2 55 下一页 到第
使用帮助 返回顶部