期刊文献+
共找到9,516篇文章
< 1 2 250 >
每页显示 20 50 100
Elimination of Computational Systematic Errors and Improvements of Weather and Climate System Models in Relation to Baroclinic Primitive Equations 被引量:2
1
作者 钟青 陈家田 孙左令 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第6期1103-1112,共10页
The design of a total energy conserving semi-implicit scheme for the multiple-level baroclinic primitive equation has remained an unsolved problem for a long time. In this work, however, we follow an energy perfect co... The design of a total energy conserving semi-implicit scheme for the multiple-level baroclinic primitive equation has remained an unsolved problem for a long time. In this work, however, we follow an energy perfect conserving semi-implicit scheme of a European Centre for Medium-Range Weather Forecasts (ECMWF) type sigma-coordinate primitive equation which has recently successfully formulated. Some real-data contrast tests between the model of the new conserving scheme and that of the ECMWF-type of global spectral semi-implicit scheme show that the RMS error of the averaged forecast Height at 850 hPa can be clearly improved after the first integral week. The reduction also reaches 50 percent by the 30th day. Further contrast tests demonstrate that the RMS error of the monthly mean height in the middle and lower troposphere also be largely reduced, and some well-known systematical defects can be greatly improved. More detailed analysis reveals that part of the positive contributions comes from improvements of the extra-long wave components. This indicates that a remarkable improvement of the model climate drift level can be achieved by the actual realizing of a conserving time-difference scheme, which thereby eliminates a corresponding computational systematic error source/sink found in the currently-used traditional type of weather and climate system models in relation to the baroclinic primitive equations. 展开更多
关键词 fidelity scheme computational systematical errors baroclinic primitive equation
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
2
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
A Data-Driven Systematic Review of the Metaverse in Transportation:Current Research,Computational Modeling,and Future Trends
3
作者 Cecilia Castro Victor Leiva Franco Basso 《Computer Modeling in Engineering & Sciences》 2025年第8期1481-1543,共63页
Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieve... Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings. 展开更多
关键词 Artificial intelligence blockchain computational modeling digital twins extended reality fuzzy MCDM machine learning metaverse reinforcement learning
在线阅读 下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
4
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Simulation of Cyber-Physical Systems of Systems: Some Research Areas-Computational Understanding, Awareness, and Wisdom 被引量:2
5
作者 Tuncer Oren 《系统仿真学报》 CAS CSCD 北大核心 2018年第2期363-385,共23页
After a brief emphasis about the interconnected world, including Cyber-Physical Systems of Systems, the increasing importance of the decision-making by autonomous, quasi-autonomous, and autonomic systems is emphasised... After a brief emphasis about the interconnected world, including Cyber-Physical Systems of Systems, the increasing importance of the decision-making by autonomous, quasi-autonomous, and autonomic systems is emphasised. Promising roles of computational understanding, computational awareness, and computational wisdom for better autonomous decision-making are outlined. The contributions of simulation-based approaches are listed. 展开更多
关键词 cyber-Physical systemS of systemS decision-making by autonomous andautonomic systemS computational UNDERSTANDING computational AWARENESS computational WISDOM simulation-based knowledge processing
原文传递
Computational Experiments for Complex Social Systems:Experiment Design and Generative Explanation 被引量:2
6
作者 Xiao Xue Deyu Zhou +5 位作者 Xiangning Yu Gang Wang Juanjuan Li Xia Xie Lizhen Cui Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1022-1038,共17页
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove... Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”. 展开更多
关键词 Agent-based modeling computational experiments cyber-physical-social systems(CPSS) generative deduction generative experiments meta model
在线阅读 下载PDF
Analysis of interaction between surface and sewer pipe system based on computational fluid dynamics 被引量:2
7
作者 Geng Yanfen Mao Jiandong +1 位作者 Wang Zhili Guo Huaqiang 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期198-205,共8页
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ... To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process. 展开更多
关键词 computational fluid dynamics(CFD) exchange flow rate urban flood model weir and orifice formula
在线阅读 下载PDF
Computational systems biology for omics data analysis 被引量:1
8
作者 Luonan Chen 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2019年第8期631-632,共2页
Recent trend on biological data at a molecular level is omics data analysis for both bulk and single cells, in eluding genomics, proteomics, metabolomics, and epigenetics data (Wang and Zhang, 2017;Zhang et al., 2017;... Recent trend on biological data at a molecular level is omics data analysis for both bulk and single cells, in eluding genomics, proteomics, metabolomics, and epigenetics data (Wang and Zhang, 2017;Zhang et al., 2017;Zhao and Li, 2017;Cheng and Leung, 2018). Rapid accumulation of such high-dimensional biological data is driving the system-level study from describing complex phenomena to understanding molecular mechanisms (Park et al., 2018;Sun et al., 2018) and from analyzi ng in dividual components to understanding their networks and systems (Chen et al., 2009;Chen, 2017). 展开更多
关键词 computational systemS BIOLOGY OMICS DATA analysis
原文传递
Computational mission analysis and conceptual system design for super low altitude satellite 被引量:1
9
作者 Ming Xu Jinlong Wang Nan Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期43-58,共16页
This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus... This paper deals with system engineering and design methodology for super low altitude satel ites in the view of the com-putational mission analysis. Due to the slight advance of imaging instruments, such as the focus of camera and the image element of charge coupled device (CCD), it is an innovative and economical way to improve the camera’s resolution to enforce the satel ite to fly on the lower altitude orbit. DFH-3, the mature satel ite bus de-veloped by Chinese Academy of Space Technology, is employed to define the mass and power budgets for the computational mis-sion analysis and the detailed engineering design for super low altitude satel ites. An effective iterative algorithm is proposed to solve the ergodic representation of feasible mass and power bud-gets at the flight altitude under constraints. Besides, boundaries of mass or power exist for every altitude, where the upper boundary is derived from the maximum power, while the minimum thrust force holds the lower boundary before the power reaching the initial value. What’s more, an analytical algorithm is employed to numerical y investigate the coverage percentage over the altitude, so that the nominal altitude could be selected from al the feasi-ble altitudes based on both the mass and power budgets and the repetitive ground traces. The local time at the descending node is chosen for the nominal sun-synchronous orbit based on the average evaluation function. After determining the key orbital ele-ments based on the computational mission analysis, the detailed engineering design on the configuration and other subsystems, like power, telemetry telecontrol and communication (TT&amp;C), and attitude determination and control system (ADCS), is performed based on the benchmark bus, besides, some improvements to the bus are also implemented to accommodate the flight at a super low altitude. Two operation strategies, drag-free closed-loop mode and on/off open-loop mode, are presented to maintain the satel-lite’s altitude. Final y, a flight planning schedule for the satel ite is demonstrated from its launch into the initial altitude at the very beginning to its decay to death in the end. 展开更多
关键词 super low altitude computational mission analysis drag free control mass and power budget.
在线阅读 下载PDF
Research on the model of high robustness computational optical imaging system
10
作者 苏云 席特立 邵晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期264-272,共9页
Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent com... Computational optical imaging is an interdisciplinary subject integrating optics, mathematics, and information technology. It introduces information processing into optical imaging and combines it with intelligent computing, subverting the imaging mechanism of traditional optical imaging which only relies on orderly information transmission. To meet the high-precision requirements of traditional optical imaging for optical processing and adjustment, as well as to solve its problems of being sensitive to gravity and temperature in use, we establish an optical imaging system model from the perspective of computational optical imaging and studies how to design and solve the imaging consistency problem of optical system under the influence of gravity, thermal effect, stress, and other external environment to build a high robustness optical system. The results show that the high robustness interval of the optical system exists and can effectively reduce the sensitivity of the optical system to the disturbance of each link, thus realizing the high robustness of optical imaging. 展开更多
关键词 computational optical imaging high robustness sensitivity
原文传递
Computational Fluid Dynamics(CFD) Analysis and Optimization of Reconstructed Intake System of Cylinder Head Based on Slicing Reverse Method
11
作者 LUO Tong LIAN Zhanghua +1 位作者 CHEN Guihui ZHANG Qiang 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期170-178,共9页
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base... To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head. 展开更多
关键词 computational fluid dynamics(CFD)analysis CFD optimization INTAKE system SLICING REVERSE METHOD
在线阅读 下载PDF
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
12
作者 Wen-Han Zhu Wei Sun +2 位作者 Xiong-Kuo Min Guang-Tao Zhai Xiao-Kang Yang 《International Journal of Automation and computing》 EI CSCD 2021年第2期204-218,共15页
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval... Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures. 展开更多
关键词 Image quality assessment(IQA) no-reference(NR) structural computational modeling human visual system visual feature extraction
原文传递
Genetic Programming Using Dynamic Population Variation for Computational Efforts Reduction in System Modeling
13
作者 陶砚蕴 曹健 李明禄 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期190-196,共7页
In this paper,we propose genetic programming(GP) using dynamic population variation(DPV) with four innovations for reducing computational efforts.A new stagnation phase definition and characteristic measure are define... In this paper,we propose genetic programming(GP) using dynamic population variation(DPV) with four innovations for reducing computational efforts.A new stagnation phase definition and characteristic measure are defined for our DPV.The exponential pivot function is proposed to our DPV method in conjunction with the new stagnation phase definition.An appropriate population variation formula is suggested to accelerate convergence.The efficacy of these innovations in our DPV is examined using six benchmark problems.Comparison among the difierent characteristic measures has been conducted for regression problems and the new proposed measure outperformed other measures.It is proved that our DPV has the capacity to provide solutions at a lower computational effort compared with previously proposed DPV methods and standard genetic programming in most cases.Meanwhile,our DPV approach introduced in GP could also rapidly find an excellent solution as well as standard GP in system modeling problems. 展开更多
关键词 dynamic population variation(DPV) stagnation phase exponential pivot function computational effort average number of evaluation diversity
原文传递
Effects of air sac compliances on flow in the parabronchi: Computational fluid dynamics using an anatomically simplified model of an avian respiratory system
14
作者 Akira Urushikubo Masanori Nakamura Hiroyuki Hirahara 《Journal of Biomedical Science and Engineering》 2013年第4期483-492,共10页
Air flow in an avian lung was studied numerically to determine the effects of air sac compliance on flow in the parabronchi. In this preliminary study, the geometry of the avian respiratory system was simplified to ca... Air flow in an avian lung was studied numerically to determine the effects of air sac compliance on flow in the parabronchi. In this preliminary study, the geometry of the avian respiratory system was simplified to capture the characteristics of respiratory flow. The pressure fluctuation within air sacs caused by inflation and deflation was expressed by a lumped parameter model. The results demonstrate that the flow direction in the parabronchi varied, depending upon the compliance of the air sacs. A unidirectional flow in the parabronchi was achieved for compliances where pressure fluctuations in all air sacs were in phase. Air sac compliance significantly affected the pressures in the anterior and posterior air sacs and thus the pressure difference over the parabronchi that drove the flow in the parabronchi. These results address the importance of air sac compliance in the avian respiratory system and suggest that the compliance of air sacs would be optimized to accomplish unidirectional flow in the parabronchi. 展开更多
关键词 computational Fluid Dynamics AVIAN LUNG AIR Sacs COMPLIANCE
暂未订购
Swarming Computational Approach for the Heartbeat Van Der Pol Nonlinear System
15
作者 Muhammad Umar Fazli Amin +4 位作者 Soheil Salahshour Thongchai Botmart Wajaree Weera Prem Junswang Zulqurnain Sabir 《Computers, Materials & Continua》 SCIE EI 2022年第9期6185-6202,共18页
The present study is related to design a stochastic framework for the numerical treatment of the Van der Pol heartbeat model(VP-HBM)using the feedforward artificial neural networks(ANNs)under the optimization of parti... The present study is related to design a stochastic framework for the numerical treatment of the Van der Pol heartbeat model(VP-HBM)using the feedforward artificial neural networks(ANNs)under the optimization of particle swarm optimization(PSO)hybridized with the active-set algorithm(ASA),i.e.,ANNs-PSO-ASA.The global search PSO scheme and local refinement of ASA are used as an optimization procedure in this study.An error-based merit function is defined using the differential VP-HBM form as well as the initial conditions.The optimization of the merit function is accomplished using the hybrid computing performances of PSO-ASA.The designed performance of ANNs-PSO-ASA is implemented for the numerical treatment of the VP-HBM dynamics by fluctuating the pulse shape adjustment terms,external forcing factor and damping coefficient with fixed ventricular contraction period.To perform the correctness of the present scheme,the obtained numerical results through the designed ANN-PSO-ASA will be compared with the Adams numerical method.The statistical investigations with larger dataset are provided using the“mean absolute deviation”,“Theil’s inequality coefficient”and“variance account for”operators to perform the applicability,reliability,and effectiveness of the designed ANNs-PSO-ASA scheme for solving the VP-HBM. 展开更多
关键词 Particle swarm optimization van der Pol heartbeat system statistical analysis artificial neural networks active-set algorithm numerical computing
在线阅读 下载PDF
Artificial intelligence ecosystem for computational psychiatry:Ideas to practice
16
作者 Xin-Qiao Liu Xin-Yu Ji +1 位作者 Xing Weng Yi-Fan Zhang 《World Journal of Meta-Analysis》 2023年第4期79-91,共13页
Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms.One of the key strengths of computa... Computational psychiatry is an emerging field that not only explores the biological basis of mental illness but also considers the diagnoses and identifies the underlying mechanisms.One of the key strengths of computational psychiatry is that it may identify patterns in large datasets that are not easily identifiable.This may help researchers develop more effective treatments and interventions for mental health problems.This paper is a narrative review that reviews the literature and produces an artificial intelligence ecosystem for computational psychiatry.The artificial intelligence ecosystem for computational psychiatry includes data acquisition,preparation,modeling,application,and evaluation.This approach allows researchers to integrate data from a variety of sources,such as brain imaging,genetics,and behavioral experiments,to obtain a more complete understanding of mental health conditions.Through the process of data preprocessing,training,and testing,the data that are required for model building can be prepared.By using machine learning,neural networks,artificial intelligence,and other methods,researchers have been able to develop diagnostic tools that can accurately identify mental health conditions based on a patient’s symptoms and other factors.Despite the continuous development and breakthrough of computational psychiatry,it has not yet influenced routine clinical practice and still faces many challenges,such as data availability and quality,biological risks,equity,and data protection.As we move progress in this field,it is vital to ensure that computational psychiatry remains accessible and inclusive so that all researchers may contribute to this significant and exciting field. 展开更多
关键词 computational psychiatry Big data Artificial intelligence Medical ethics Large-scale online data
暂未订购
Computational Thermo-Fluid Dynamic Simulation of a Radiant Off-Gases Cooling System for Copper Smelting in a Pierce Smith Converter
17
作者 Yerko Aguilera-Carvajal Sebastián Pérez-Cortés +1 位作者 Juan Hurtado-Cruz Erick Morales-Quezada 《International Journal of Modern Nonlinear Theory and Application》 2014年第5期236-247,共12页
In copper sulfide concentrates smelting, the off-gases from the Pierce Smith converter (PSC) furnace must be treated to prevent environmental impacts as they are highly corrosive and toxic. The purpose of this researc... In copper sulfide concentrates smelting, the off-gases from the Pierce Smith converter (PSC) furnace must be treated to prevent environmental impacts as they are highly corrosive and toxic. The purpose of this research project is to present a methodology for the simulation of a capture and cooling system of the smelting off-gases from a Pierce Smith copper converter, using computational fluid dynamics. Through this methodology, it is possible to obtain a simulation model of the smelting off-gases behavior with an average error of 9.88%. Basically, it demonstrates that the simulated tendencies of the metallurgical off-gases on the cooling hood and chamber can be reliable to predict the thermo-fluid dynamic behavior of the off-gases inside the studied off-gases handling system. 展开更多
关键词 Capture HOOD Radiant Cooling system Copper Sulfide SMELTING Off-Gases computational Fluid Dynamics (CFD) SIMULATION
暂未订购
Chaos in Solving Polynomial Systems for Computational Kinematics by Newton-Raphson Method
18
作者 谢进 陈永 《Journal of Modern Transportation》 2000年第2期123-128,共6页
Problems in mechanism analysis and synthesis and robotics lead naturally to systems of nonlinear equations. In this paper, an approach based on Newton Raphson method and the property of fractals is presented to obtain... Problems in mechanism analysis and synthesis and robotics lead naturally to systems of nonlinear equations. In this paper, an approach based on Newton Raphson method and the property of fractals is presented to obtaining all roots of equation. An example from plane mechanism synthesis is given to demonstrate the idea of the method. 展开更多
关键词 CHAOS computational kinematics Newton-Raphson metho?
在线阅读 下载PDF
A Computational Comparison of Basis Updating Schemes for the Simplex Algorithm on a CPU-GPU System
19
作者 Nikolaos Ploskas Nikolaos Samaras 《American Journal of Operations Research》 2013年第6期497-505,共9页
The computation of the basis inverse is the most time-consuming step in simplex type algorithms. This inverse does not have to be computed from scratch at any iteration, but updating schemes can be applied to accelera... The computation of the basis inverse is the most time-consuming step in simplex type algorithms. This inverse does not have to be computed from scratch at any iteration, but updating schemes can be applied to accelerate this calculation. In this paper, we perform a computational comparison in which the basis inverse is computed with five different updating schemes. Then, we propose a parallel implementation of two updating schemes on a CPU-GPU System using MATLAB and CUDA environment. Finally, a computational study on randomly generated full dense linear programs is preented to establish the practical value of GPU-based implementation. 展开更多
关键词 SIMPLEX Algorithm BASIS INVERSE GRAPHICS Processing Unit MATLAB Compute UNIFIED Device Architecture
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部