We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functio...We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functions,gives rise to the new Scorer beams.We explore the dynamics of counterpropagating Scorer beams,as promising optical wave packets,focusing on their compression behavior.The Scorer beams are characterized by two key parameters:the attenuation factor and the initial pulse width.By appropriately adjusting these parameters,significant beam compression can be achieved.Specifically,increasing the attenuation factor enhances compression and raises pulse amplitude,while reducing the initial pulse width further amplifies these effects.Along the way,we observe interesting interference patterns of the counterpropagating Scorer beams that have never been seen before.This study introduces a novel approach to beam compression and opens new possibilities for practical applications of Scorer beams.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are deriv...This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.展开更多
In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heat...In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.展开更多
Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processin...Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.展开更多
The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. Th...The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of (lust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.展开更多
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i...An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.展开更多
In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary unde...In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary under the impingement of an inviscid shock wave. Based on the high order inverse Lax-Wendroff(ILW) procedure developed in the previous work(TAN, S. and SHU, C. W. A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 230(15),6023–6036(2011)), in which the authors only considered the translation of the rigid body,we consider both translation and rotation of the body in this paper. In particular, we reformulate the material derivative on the moving boundary with no-penetration condition, and the newly obtained formula plays a key role in the proposed algorithm. Several numerical examples, including cylinder, elliptic cylinder, and NACA0012 airfoil, are given to indicate the effectiveness and robustness of the present method.展开更多
A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction ...A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator.展开更多
In this article an investigation is presented on the properties of dust acoustic(DA)compressive solitary wave propagation in an adiabatic dusty plasma,including the effect of nonthermal positive and negative ions an...In this article an investigation is presented on the properties of dust acoustic(DA)compressive solitary wave propagation in an adiabatic dusty plasma,including the effect of nonthermal positive and negative ions and non-isothermal electrons.The reductive perturbation method has been employed to derive the lower degree modified Kadomtsev-Petviashivili(mK-P),3D Schamel-Korteweg-de-Vries equation or modified Kadomtsev-Petviashivili(mK-P) equations for dust acoustic solitary waves in a homogeneous,unmagnetized and collisionless plasma whose constituents are non-isothermal electrons,singly charged positive and negative non-thermal ions and massive charged dust particles.The stationary analytical solutions of the lower degree mK-P and mK-P equations are numerically analyzed,where the effect of various dusty plasma constituents on DA solitary wave propagation is taken into account.It is observed that both the ions in dusty plasma play a key role in the formation of DA compressive solitary waves,and also the ion concentration and non-isothermal electrons control the transformation of the compressive potentials of the waves.展开更多
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic...Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.展开更多
The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used ...The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used to obtain the wave speeds in material and the stress histories at the sample gauge interface. The wave speed and stress histories were analyzed to determine the peak state in the sample. For compressive stress up to 4 0 GPa, the wave profiles were observed to be simple and steady, the uniaxial strain response is essentially nonlinear elastic, and no inelastic deformation has been found. All the experiment results indicate that the Hugoniot curve of vitreous carbon is concave downward just like that of fused silicon. There is no shock wave but the compressed wave propagating in the impacted samples.展开更多
Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechan...Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechanical characteristics of a typical gas shale in Ohio, USA. Scanning electron microscope(SEM) with energy dispersive X-ray (EDX) analyses was employed to measure the microstructureand material composition of the shale rock. The anisotropic behaviors of shale rock, includingcompressive and tensile strengths, were experimentally measured. The characteristics of shale rock werealso studied by nondestructive wave speed measurements. The shale demonstrated strong anisotropicbehaviors with the tensile strengths perpendicular to the bedding plane around 300e360 times of thatparallel to bedding plane. Results of ultrasonic tests indicated that both compression and shear wavevelocities show strong anisotropic patterns. The compression wave speed was the smallest in the directionperpendicular to the bedding plane; while the shear wave speed was the smallest in the directionparallel to the bedding plane. The ratio of wave speed anisotropy is around 1.3e1.4 for compressionwave; the ratio of shear wave speed anisotropy is larger and more diverse compared with thecompression wave anisotropy. This might be related to the larger variability in the frictional adhesivestrength along bedding plane than the compressive adhesive strength. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The m...The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The method relies on a RNG k-εtwo-equation turbulence model.It is shown that although reducing the oblique slope can alleviate the pressure gradient resulting from initial compression waves at the tunnel entrance,the pressure fluctuations in the tunnel are barely affected;however,a large reduction of micro-pressure wave amplitudes is found outside the tunnel.In comparison to the case where no tunnel hood is present,the amplitudes of micro-pressure waves at 40 m from the tunnel reach an acceptable range.The aerodynamic drag of the head and tail fluctuates greatly while that of the intermediate region undergoes only limited variations when the high-speed train passes through the double-hat oblique tunnel.It is shown that the effects of the oblique slope of the portal on the aerodynamic drag can almost be ignored while the train speed plays an important role.展开更多
The purpose of this paper is to consider 1D Riemann shock tube to investigate the formation and propagation of compression waves leading to formation, propagation and reflection of 1D normal shocks using simplified ma...The purpose of this paper is to consider 1D Riemann shock tube to investigate the formation and propagation of compression waves leading to formation, propagation and reflection of 1D normal shocks using simplified mathematical models commonly used in the published work as well as using complete mathematical models based on Conservation and Balance Laws (CBL) of classical continuum mechanics and constitutive theories for compressible viscous medium derived using entropy inequality and representation theorem. This work is aimed at resolving compression waves, the shock structure, shock formation, propagation and reflection of fully formed shocks. Evolutions obtained from the mathematical models always satisfy differentiability requirements in space and time dictated by the highest order of the derivatives of the dependent variables in the mathematical models investigated. All solutions reported in this paper including boundary conditions and initial conditions are always analytic. Solutions of the mathematical models are obtained using the space-time finite element method in which the space-time integral forms are space-time variationally consistent ensuring unconditionally stable computations during the entire evolution. Solution for a space-time strip or slab is calculated and is time marched upon convergence to obtain complete evolution for the desired space-time domain, thus ensuring time accurate evolutions. The space-time local approximation over a space-time element of a space-time strip or slab is p-version hierarchical with higher-order global differentiability in space and time, i.e., we consider scalar product approximation spaces in which k = (k<sub>1</sub>, k<sub>2</sub>) are the order of the space in space and time and p = (p<sub>1</sub>, p<sub>2</sub>) are p-levels of the approximations in space and time. Model problem studies are presented for different mathematical models and are compared with solutions obtained from the complete mathematical model based on CBL and constitutive theories for viscous compressible medium to illustrate the deficiencies and shortcomings of the simplified and approximate models in simulating correct physics of normal shocks.展开更多
A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a co...A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a compression wave generated ahead of a high-speed train entering a tunnel propagates to the tunnel exit and spouts as a micro pressure wave,which causes an exploding sound.In order to estimate the magnitude correctly,the mechanism of the attenuation and distortion of a compression wave propagating along a very long tunnel must be understood and the experimental information on these phenomena is required.An experimental investigation is carried out to clarify the attenuation and distortion of the propagating compression wave in a very long tube.Experimental results show that the strength of a compression wave decreases with distance.The attenuation and distortion of compression waves are affected by the initial waveform of the compression wave and by the unsteady boundary layer induced by the propagating wave.The shape of a compression wave becomes different with the propagating distance;that is,a shock wave appears just head of a wavefront and an overshoot on pressure distribution is observed behind a shock wave due to the transition of the unsteady boundary layer.展开更多
A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact t...A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carded out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.展开更多
This paper is concerned with the large-time behavior of solutions to an initial-boundary-value problem for full compressible Navier-Stokes equations on the half line(0,∞),which is named impermeable wall problem.It ...This paper is concerned with the large-time behavior of solutions to an initial-boundary-value problem for full compressible Navier-Stokes equations on the half line(0,∞),which is named impermeable wall problem.It is shown that the 3-rarefaction wave is stable under partially large initial perturbation if the adiabatic exponent γ is close to 1.Here partially large initial perturbation means that the perturbation of absolute temperature is small,while the perturbations of specific volume and velocity can be large.The proof is given by the elementary energy method.展开更多
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda...In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.展开更多
This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and witho...This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.展开更多
This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20...This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20m/s and 40m/ s. The least air concentration to prevent cavitation erosion lies between 1. 7% and 4. 5%. Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured. Time-averaged pressure profiles with and without aeration were compared. Pressure characteristics cotresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62275176the Natural Science Foundation of Guangdong Province,China,under Grant No.2022A1515010084+1 种基金by Key Projects of Basic Research and Applied Basic Research in Universities of Guangdong Province,China,under Grants Nos.2021ZDZX1118 and 2022ZDZX1079supported by the NPRP 13S-0121-200126 Project with the Qatar National Research Fund(a member of the Qatar Foundation).
文摘We investigate the diffractive paraxial wave equation with an external potential,utilizing self-similarity and variable separation methods.The exact solution to this evolution equation,expressed through Scorer functions,gives rise to the new Scorer beams.We explore the dynamics of counterpropagating Scorer beams,as promising optical wave packets,focusing on their compression behavior.The Scorer beams are characterized by two key parameters:the attenuation factor and the initial pulse width.By appropriately adjusting these parameters,significant beam compression can be achieved.Specifically,increasing the attenuation factor enhances compression and raises pulse amplitude,while reducing the initial pulse width further amplifies these effects.Along the way,we observe interesting interference patterns of the counterpropagating Scorer beams that have never been seen before.This study introduces a novel approach to beam compression and opens new possibilities for practical applications of Scorer beams.
基金Program for New Century Excellent Talents in University Under Grant No. NCET-05-0248the Key Program for Applied Basic Research of Tianjin Municipality Under Grant No. 07JCZDJC10100
文摘This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.
基金supported by the National Natural Science Foundation of China(Grant No.11802137,11702143 and 11802039)the Fundamental Research Funds for the Central Universities(No.30919011259).
文摘In order to study the instability propagation characteristics of the liquid kerosene rotating detonation wave(RDW),a series of experimental tests were carried out on the rotating detonation combustor(RDC)with air-heater.The fuel and oxidizer are room-temperature liquid kerosene and preheated oxygenenriched air,respectively.The experimental tests keep the equivalence ratio of 0.81 and the oxygen mass fraction of 35%unchanged,and the total mass flow rate is maintained at about 1000 g/s,changing the total temperature of the oxygen-enriched air from 620 K to 860 K.Three different types of instability were observed in the experiments:temporal and spatial instability,mode transition and re-initiation.The interaction between RDW and supply plenum may be the main reason for the fluctuations of detonation wave velocity and pressure peaks with time.Moreover,the inconsistent mixing of fuel and oxidizer at different circumferential positions is related to RDW oscillate spatially.The phenomenon of single-double-single wave transition is analyzed.During the transition,the initial RDW weakens until disappears,and the compression wave strengthens until it becomes a new RDWand propagates steadily.The increased deflagration between the detonation products and the fresh gas layer caused by excessively high temperature is one of the reasons for the RDC quenching and re-initiation.
基金This work has been partially performed under the financial supports from the National Natural Science Foundation of China (Grant No.50204004)the National Fundamental Research Project - new generation steel research project of China (Grant No.G1998061
文摘Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575082 and 10247008, the Natural Science Foundation of Gansu Province under Grant No. YS021-A22-018, the Scientific Research Foundation for the Returned 0verseas Chinese Scholars of the Ministry of Education, the Natural Science Foundation of Northwest Normal University under Grant No. NWNU-KJCXGC215, and partially supported by the Foundation of Royal Society K.C. Wong Fellowship of UK
文摘The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of (lust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.
文摘An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
基金Project supported by the National Natural Science Foundation of China (Nos. 11901555, 11901213,11871448, and 11732016)the National Numerical Windtunnel Project (No. NNW2019ZT4-B10)。
文摘In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary under the impingement of an inviscid shock wave. Based on the high order inverse Lax-Wendroff(ILW) procedure developed in the previous work(TAN, S. and SHU, C. W. A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 230(15),6023–6036(2011)), in which the authors only considered the translation of the rigid body,we consider both translation and rotation of the body in this paper. In particular, we reformulate the material derivative on the moving boundary with no-penetration condition, and the newly obtained formula plays a key role in the proposed algorithm. Several numerical examples, including cylinder, elliptic cylinder, and NACA0012 airfoil, are given to indicate the effectiveness and robustness of the present method.
基金supported by the National Natural Science Foundation of China (50890182,10972226)
文摘A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator.
文摘In this article an investigation is presented on the properties of dust acoustic(DA)compressive solitary wave propagation in an adiabatic dusty plasma,including the effect of nonthermal positive and negative ions and non-isothermal electrons.The reductive perturbation method has been employed to derive the lower degree modified Kadomtsev-Petviashivili(mK-P),3D Schamel-Korteweg-de-Vries equation or modified Kadomtsev-Petviashivili(mK-P) equations for dust acoustic solitary waves in a homogeneous,unmagnetized and collisionless plasma whose constituents are non-isothermal electrons,singly charged positive and negative non-thermal ions and massive charged dust particles.The stationary analytical solutions of the lower degree mK-P and mK-P equations are numerically analyzed,where the effect of various dusty plasma constituents on DA solitary wave propagation is taken into account.It is observed that both the ions in dusty plasma play a key role in the formation of DA compressive solitary waves,and also the ion concentration and non-isothermal electrons control the transformation of the compressive potentials of the waves.
基金supported by the National Natural Science Foundation of China(Nos.12202011,12332014)China Postdoctoral Science Foundation(No.2022M710190).
文摘Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.
文摘The dynamic response of vitreous carbon to uniaxial strain loading has been investigated by means of the plate impact experiments. The two x cut shorted quartz gauges assembled with impactor and target were used to obtain the wave speeds in material and the stress histories at the sample gauge interface. The wave speed and stress histories were analyzed to determine the peak state in the sample. For compressive stress up to 4 0 GPa, the wave profiles were observed to be simple and steady, the uniaxial strain response is essentially nonlinear elastic, and no inelastic deformation has been found. All the experiment results indicate that the Hugoniot curve of vitreous carbon is concave downward just like that of fused silicon. There is no shock wave but the compressed wave propagating in the impacted samples.
文摘Shale gas is becoming an important energy source worldwide. The geomechanical properties of shalerocks can have a major impact on the efficiency of shale gas exploration. This paper studied themineralogical and mechanical characteristics of a typical gas shale in Ohio, USA. Scanning electron microscope(SEM) with energy dispersive X-ray (EDX) analyses was employed to measure the microstructureand material composition of the shale rock. The anisotropic behaviors of shale rock, includingcompressive and tensile strengths, were experimentally measured. The characteristics of shale rock werealso studied by nondestructive wave speed measurements. The shale demonstrated strong anisotropicbehaviors with the tensile strengths perpendicular to the bedding plane around 300e360 times of thatparallel to bedding plane. Results of ultrasonic tests indicated that both compression and shear wavevelocities show strong anisotropic patterns. The compression wave speed was the smallest in the directionperpendicular to the bedding plane; while the shear wave speed was the smallest in the directionparallel to the bedding plane. The ratio of wave speed anisotropy is around 1.3e1.4 for compressionwave; the ratio of shear wave speed anisotropy is larger and more diverse compared with thecompression wave anisotropy. This might be related to the larger variability in the frictional adhesivestrength along bedding plane than the compressive adhesive strength. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by the National Natural Science Foundation of China,China Grant(11972028),under the project“Analysis of Unsteady Aerodynamic Characteristics of High-Speed Train”。
文摘The tunnel-train-air interaction problem is investigated by using a numerical method able to provide relevant information about pressure fluctuations,aerodynamic drag characteristics and the“piston wind”effect.The method relies on a RNG k-εtwo-equation turbulence model.It is shown that although reducing the oblique slope can alleviate the pressure gradient resulting from initial compression waves at the tunnel entrance,the pressure fluctuations in the tunnel are barely affected;however,a large reduction of micro-pressure wave amplitudes is found outside the tunnel.In comparison to the case where no tunnel hood is present,the amplitudes of micro-pressure waves at 40 m from the tunnel reach an acceptable range.The aerodynamic drag of the head and tail fluctuates greatly while that of the intermediate region undergoes only limited variations when the high-speed train passes through the double-hat oblique tunnel.It is shown that the effects of the oblique slope of the portal on the aerodynamic drag can almost be ignored while the train speed plays an important role.
文摘The purpose of this paper is to consider 1D Riemann shock tube to investigate the formation and propagation of compression waves leading to formation, propagation and reflection of 1D normal shocks using simplified mathematical models commonly used in the published work as well as using complete mathematical models based on Conservation and Balance Laws (CBL) of classical continuum mechanics and constitutive theories for compressible viscous medium derived using entropy inequality and representation theorem. This work is aimed at resolving compression waves, the shock structure, shock formation, propagation and reflection of fully formed shocks. Evolutions obtained from the mathematical models always satisfy differentiability requirements in space and time dictated by the highest order of the derivatives of the dependent variables in the mathematical models investigated. All solutions reported in this paper including boundary conditions and initial conditions are always analytic. Solutions of the mathematical models are obtained using the space-time finite element method in which the space-time integral forms are space-time variationally consistent ensuring unconditionally stable computations during the entire evolution. Solution for a space-time strip or slab is calculated and is time marched upon convergence to obtain complete evolution for the desired space-time domain, thus ensuring time accurate evolutions. The space-time local approximation over a space-time element of a space-time strip or slab is p-version hierarchical with higher-order global differentiability in space and time, i.e., we consider scalar product approximation spaces in which k = (k<sub>1</sub>, k<sub>2</sub>) are the order of the space in space and time and p = (p<sub>1</sub>, p<sub>2</sub>) are p-levels of the approximations in space and time. Model problem studies are presented for different mathematical models and are compared with solutions obtained from the complete mathematical model based on CBL and constitutive theories for viscous compressible medium to illustrate the deficiencies and shortcomings of the simplified and approximate models in simulating correct physics of normal shocks.
文摘A lot of phenomena related to propagating various waves are seen when the high-speed train goes through the tunnel,the gas pipeline is broken due to an accident or the air brake of the wagon operates.For instance,a compression wave generated ahead of a high-speed train entering a tunnel propagates to the tunnel exit and spouts as a micro pressure wave,which causes an exploding sound.In order to estimate the magnitude correctly,the mechanism of the attenuation and distortion of a compression wave propagating along a very long tunnel must be understood and the experimental information on these phenomena is required.An experimental investigation is carried out to clarify the attenuation and distortion of the propagating compression wave in a very long tube.Experimental results show that the strength of a compression wave decreases with distance.The attenuation and distortion of compression waves are affected by the initial waveform of the compression wave and by the unsteady boundary layer induced by the propagating wave.The shape of a compression wave becomes different with the propagating distance;that is,a shock wave appears just head of a wavefront and an overshoot on pressure distribution is observed behind a shock wave due to the transition of the unsteady boundary layer.
文摘A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carded out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.
基金Supported by the National Natural Science Foundation of China(No.11401318,11171153)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.14KJB110020)the Scientic Research Foundation of NUPT(No.NY214023)
文摘This paper is concerned with the large-time behavior of solutions to an initial-boundary-value problem for full compressible Navier-Stokes equations on the half line(0,∞),which is named impermeable wall problem.It is shown that the 3-rarefaction wave is stable under partially large initial perturbation if the adiabatic exponent γ is close to 1.Here partially large initial perturbation means that the perturbation of absolute temperature is small,while the perturbations of specific volume and velocity can be large.The proof is given by the elementary energy method.
文摘In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries.
基金Project supported by the National Natural Science Foundation of China (Grant No: 50279048).
文摘This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.
文摘This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20m/s and 40m/ s. The least air concentration to prevent cavitation erosion lies between 1. 7% and 4. 5%. Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured. Time-averaged pressure profiles with and without aeration were compared. Pressure characteristics cotresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.