Qaidam Basin in Qinghai Province has rich multiple complex resources with salt lakes as the core.These resources form a special condition for the development of green economy,having rare and particular nature.The
This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. T...The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. The steel slag was utilized both within the company and across the society, and the utilization rate within the company achieved was 16%. This study describes the current status and existing problems in those technologies of treating and using steel slag ,in the aspects of primary treatment, secondary treatment and advanced treatment, and it points out the development' s direction.展开更多
In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehen...In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehensively developed and utilized in different degrees,such as in-depth research and development in the fields of animal husbandry,agriculture,and cosmetics,so as to achieve the effects of accelerating the high-quality development of chestnut industry,realizing the green cycle of resources,reducing waste and promoting the development of rural industries.展开更多
Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for ge...Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.展开更多
Climate change severely challenges our ecosystem and society,affecting urban residents’socioeconomic activities.Thus,assessing severe weather risk is crucial for evaluating urban sustainability;understanding trends,c...Climate change severely challenges our ecosystem and society,affecting urban residents’socioeconomic activities.Thus,assessing severe weather risk is crucial for evaluating urban sustainability;understanding trends,causes,and impacts on socioeconomic development;and supporting the United Nations Sustainable Development Goal(SDG)13.Using meteorological data from 1980 to 2020,we investigate five disaster-causing severe weather events in China and construct a comprehensive index of extreme climate risk(CIECR)at the county,city,province,and national levels.The CIECR can identify high-risk regions and primary severe weather events and provide early warnings.We empirically test the impact of extreme climate risks on agricultural production,industrial structure,and labor employment.The results show high risks in Xinjiang,northern Inner Mongolia,and southern regions,with high temperatures,low temperatures,and high winds as the leading risks.At the national level,the extreme climate risk fluctuates,indicating climate warming.While risks reduce agricultural production and employment,they promote modern agriculture,industrial production,and urbanization.The novelty of the study lies in its development of the county-level CIECR,which can capture heterogeneity characteristics and provide microdata support for urban climate change research and efforts toward SDG 13.This study aids in mitigating climate risks;responding to climate change;and comprehensively analyzing the causes,trends,and impacts of extreme climate risks.展开更多
The Dingbian Saline Lake groups are in Dingbian County,northwest of Shaanxi province,and located on the border area of the Loess Plateau and Maowusu Desert in Northern Shanxi.It’s altitude is more than 1300m.The
The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanis...The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.展开更多
State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.
State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The la...State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.展开更多
State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The la...State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.展开更多
China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization w...China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.展开更多
A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products w...A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.展开更多
This paper investigated and analyzed the conservation and utilization of four local livestock breeds in Binzhou City:Wadi Sheep,Bohai Black Cattle,Wudi Donkey,and Lubei White Goat.Shortcomings in the protection and ut...This paper investigated and analyzed the conservation and utilization of four local livestock breeds in Binzhou City:Wadi Sheep,Bohai Black Cattle,Wudi Donkey,and Lubei White Goat.Shortcomings in the protection and utilization of local germplasm resources were pointed out,and strategies and recommendations were proposed to promote high-quality development of livestock and poultry genetic resources in Binzhou,including building a solid germplasm foundation,standardizing production,and driving innovation.This paper provides references for the conservation,development,and utilization of local genetic resources in Binzhou City.展开更多
1. The natural economic conditions of yanchi county Yanchi County (in Ningxia Province, China) lies between the Muwus Desert and theLoess Plateau, its geographical location is a typical transition belt. The view from ...1. The natural economic conditions of yanchi county Yanchi County (in Ningxia Province, China) lies between the Muwus Desert and theLoess Plateau, its geographical location is a typical transition belt. The view from south tonorth: the general configuration of the earth’s surface is from the Loess Plateau to Ordos ta-bleland; the climate is from semi arid to arid. The transition of its geogrophical location pro-vides the area such features which are various,complex and fragile in natural conditions.展开更多
Strategic transformation of regionalization for agricultural comprehensive development(ACD) was presented by the Ministry of Finance of the People's Republic of China(MOF) in 2014. The regionalization is the premi...Strategic transformation of regionalization for agricultural comprehensive development(ACD) was presented by the Ministry of Finance of the People's Republic of China(MOF) in 2014. The regionalization is the premise and basis of the sustainable development and improved competitiveness for agriculture. Based on the environmental resources related to agriculture, such as cropland, climate, water resources, terrain, geomorphology, patterns of the ACD projects, distribution of ecological planning, etc., we devised 13 indices using the geographic comprehensive regionalization method. The indices took into account a combination of dynamic and static, qualitative and quantitative, as well as agricultural and ecological factors. The strategic transformation of regionalization for the ACD in Ningxia Hui Autonomous Region of China was performed; seven types were included: prioritized regions, prioritized and restricted regions, protected regions, protected and restricted regions, restricted and prioritized regions, restricted and protected regions, and restricted regions. A further 24 subtypes were used based on locations and ecological zones. The regionalization results showed that prioritized regions were mainly in northern Ningxia, the most suitable area for agriculture. The protected and restricted regions were in central and southern Ningxia. In the central part, drought was the limiting factor for agriculture, and water conservation projects there should be supported. The ecological environment is fragile in southern Ningxia, so there is a need for ecologically sound agriculture to be developed in this region. Such regionaliza-tion could achieve two goals, namely agricultural conservation and eco-environmental protection. It was performed following the requirement for scientific regionalization to include three types of regions(prioritized regions, protected regions, and restricted regions), and was applied at the township scale in a provincial or autonomous region for the first time. The results provide both guidance for the strategic transformation of the ACD in Ningxia, and a reference for similar work in other provinces.展开更多
China is a big country producing straw, and there are nearly 30 kinds of straw. There are huge resources hidden in straw, and nearly half of the nutrients absorbed by crops will remain in straw. In recent years, with ...China is a big country producing straw, and there are nearly 30 kinds of straw. There are huge resources hidden in straw, and nearly half of the nutrients absorbed by crops will remain in straw. In recent years, with the depletion of fossil energy and the deterioration of environmental conditions, the comprehensive utilization of straw resources has become a topic of increasing concern. Reasonable utilization of straw resources is of great significance to protect the environment, alleviate the energy crisis and promote social development. This paper introduces the present situation and existing problems of straw burning ban and straw comprehensive utilization in Taojiang County, which provides some references for strengthening straw burning ban and straw comprehensive utilization, effectively improving the quality of agricultural ecology and atmospheric environment, and promoting the sustainable development of agriculture.展开更多
The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, part...The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, particle size, and dissemination characteristics of the ores were studied in detail. Results show that Ta2O5 and Nb2O5 have grades of 0.013 % and 0.011%, respectively. The main valuable minerals in the ores are tantalite, col- umbite, tantalum-niobite, and microlite, and the gangue minerals associated with tantalum-niobium minerals mainly include quartz, kaolinite, illite, feldspar, and mica among others. The minerals are embedded in a complex manner. Tantalum-niobium minerals with most particle sizes of -0.040 mm are disseminated in minerals, such as mica, illite, quartz, and partially intergrown with topaz and zircon, where they could not be easily liberated. Thus, the ores are classified as low-grade, micro-fine, and refractory tantalum-niobium ores. Based on this consideration, the process of classification-gravity concentration-magnetic separation-middlings regrinding and gravity concentration are finally determined and satisfactory indices are obtained. Two rough concentrates are produced: Concentrate I has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %. By comparison, Concentrate Ⅱ has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %.展开更多
Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and...Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...展开更多
With the aim of high-efficiency utilization of Dandong ludwigite ore, a new process of metallizing reduction and mag- netic separation was proposed, and the effects of reduction temperature, reduction time, carbon rat...With the aim of high-efficiency utilization of Dandong ludwigite ore, a new process of metallizing reduction and mag- netic separation was proposed, and the effects of reduction temperature, reduction time, carbon ratio, ore size and coal size on the efficiency of the process were investigated in details, and relevant mechanisms were elucidated by SEM and EDS. The optimum technological parameters for metallizing reduction and magnetic separation on ludwigite ore were obtained as reduction tempera- ture of 1 250 ℃, reduction time of 60 min, carbon ratio of 1.4, ore size of 0.500-2.000 mm, and coal size of 0.50-1.50 mm. After adopting the optimum parameters, the iron content and recovery ratio of iron in magnetic substance are 87.78% and 88.02%, re- spectively, while the recovery ratios of boron, magnesium and silicon in non-magnetic substance are 88.86%, 94.60% and 98.66%, respectively. After metallizing reduction and magnetic separation, valuable elements of ludwigite ore could be separated and uti- lized in subsequent steelmaking process and hydrometallurgy process.展开更多
文摘Qaidam Basin in Qinghai Province has rich multiple complex resources with salt lakes as the core.These resources form a special condition for the development of green economy,having rare and particular nature.The
文摘This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
文摘The steel slag at Baosteel mainly comes from basic oxygen furnaces (BOF), electric arc furnaces (EAF), continuous casting and hot metal pretreatment. The output of the steel slag at Baosteel was 4.43 Mt in 2010. The steel slag was utilized both within the company and across the society, and the utilization rate within the company achieved was 16%. This study describes the current status and existing problems in those technologies of treating and using steel slag ,in the aspects of primary treatment, secondary treatment and advanced treatment, and it points out the development' s direction.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceAgricultural Science and Technology Achievement Promotion Project in Hebei Province(JNK 24083).
文摘In order to further promote the chestnut industrial chain,a large number of chestnut byproducts(chestnut leaves,chestnut shells,chestnut flowers,etc.)are produced every year.These chestnut byproducts will be comprehensively developed and utilized in different degrees,such as in-depth research and development in the fields of animal husbandry,agriculture,and cosmetics,so as to achieve the effects of accelerating the high-quality development of chestnut industry,realizing the green cycle of resources,reducing waste and promoting the development of rural industries.
文摘Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.
基金supported by the National Key Research and Development Program of China under the theme“Construction of a data representation framework for sustainable development indicators”[Grant No.2022YFC3802903-01]the National Natural Science Foundation of China“An economic theory based on the new production function in carbon neutrality”[Grant No.72250064]the National Natural Science Foundation of China“Macroeconomics”[Grant No.72122011].
文摘Climate change severely challenges our ecosystem and society,affecting urban residents’socioeconomic activities.Thus,assessing severe weather risk is crucial for evaluating urban sustainability;understanding trends,causes,and impacts on socioeconomic development;and supporting the United Nations Sustainable Development Goal(SDG)13.Using meteorological data from 1980 to 2020,we investigate five disaster-causing severe weather events in China and construct a comprehensive index of extreme climate risk(CIECR)at the county,city,province,and national levels.The CIECR can identify high-risk regions and primary severe weather events and provide early warnings.We empirically test the impact of extreme climate risks on agricultural production,industrial structure,and labor employment.The results show high risks in Xinjiang,northern Inner Mongolia,and southern regions,with high temperatures,low temperatures,and high winds as the leading risks.At the national level,the extreme climate risk fluctuates,indicating climate warming.While risks reduce agricultural production and employment,they promote modern agriculture,industrial production,and urbanization.The novelty of the study lies in its development of the county-level CIECR,which can capture heterogeneity characteristics and provide microdata support for urban climate change research and efforts toward SDG 13.This study aids in mitigating climate risks;responding to climate change;and comprehensively analyzing the causes,trends,and impacts of extreme climate risks.
文摘The Dingbian Saline Lake groups are in Dingbian County,northwest of Shaanxi province,and located on the border area of the Loess Plateau and Maowusu Desert in Northern Shanxi.It’s altitude is more than 1300m.The
基金funded by State Grid Beijing Electric Power Company Technology Project,grant number 520210230004.
文摘The park-level integrated energy system(PIES)is essential for achieving carbon neutrality by managing multi-energy supply and demand while enhancing renewable energy integration.However,current carbon trading mechanisms lack sufficient incentives for emission reductions,and traditional optimization algorithms often face challenges with convergence and local optima in complex PIES scheduling.To address these issues,this paper introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS integration,hydrogen utilization,and the Secretary Bird Optimization Algorithm(SBOA).Key innovations include:(1)A dynamic reward-penalty carbon trading mechanism with coefficients(μ=0.2,λ=0.15),which reduces carbon trading costs by 47.2%(from$694.06 to$366.32)compared to traditional tiered models,incentivizing voluntary emission reductions.(2)The integration of P2G-CCS coupling,which lowers natural gas consumption by 41.9%(from$4117.20 to$2389.23)and enhances CO_(2) recycling efficiency,addressing the limitations of standalone P2G or CCS technologies.(3)TheSBOA algorithm,which outperforms traditionalmethods(e.g.,PSO,GWO)in convergence speed and global search capability,avoiding local optima and achieving 24.39%faster convergence on CEC2005 benchmark functions.(4)A four-energy PIES framework incorporating electricity,heat,gas,and hydrogen,where hydrogen fuel cells and CHP systems improve demand response flexibility,reducing gas-related emissions by 42.1%and generating$13.14 in demand response revenue.Case studies across five scenarios demonstrate the strategy’s effectiveness:total operational costs decrease by 14.7%(from$7354.64 to$6272.59),carbon emissions drop by 49.9%(from 5294.94 to 2653.39kg),andrenewable energyutilizationincreases by24.39%(from4.82%to8.17%).These results affirmthemodel’s ability to reconcile economic and environmental goals,providing a scalable approach for low-carbon transitions in industrial parks.
文摘State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.
文摘State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.
文摘State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization was approved by the Ministry of Science and Technology to be one of the national key laboratories in November 2022.The laboratory was reconstructed based on former State Key Laboratory of Baiyun Obo Rare Earth Resources Researches and Comprehensive Utilization.
基金Supported by Innovation Funds of Jiangxi Academy of Agricultural Sciences(20141CBS003)Jiangxi Provincial Earmarked Fund for Agriculture Research System(JXARS-02)~~
文摘China is a big producer and consumer of tea. A huge amount of tea waste is produced in China every year, resulting in environmental pollution and enormous natural resources waste. From the perspective of utilization way, this pa- per summarized the research progresses in tea waste as a raw material for ex- tracting active ingredients and preparing absorbent, activated carbon, bio-organic fer- tilizer, animal feed and nutrients for edible fungi cultivation. In addition, the develop- ment trend of comprehensive utilization of tea waste was prospected. It is found that the comprehensive utilization of tea waste using a variety of techniques can im- prove the utilization efficiency of tea waste and reduce production costs. Finally, a simple and practical comprehensive utilization program was proposed to provide a reference for practical application.
基金Project(CX2015B053)supported by the Hunan Provincial Innovation Foundation for PostgraduateChinaProject(B14034)supported by National 111 Project of China
文摘A novel process aimed at the comprehensive utilization of sintering dust was developed by combining wetting grinding with sulfidization flotation. The mineralogical characteristics of the sintering dust and products were studied by powder wettability analysis, X-ray diffraction(XRD), scanning electron microscopy(SEM) and mineral liberation analyzer(MLA). It was found that the primary lead species was laurionite and most of the particles were overwrapped with KCl. Wetting grinding was shown to accelerate the dispersion of sintering dust and transform the KCl overlay to a leachate with 20.78 g/L of K+. A lead and silver concentrate consisting of 40.82% of Pb and 0.96 kg/t of Ag was achieved, while an iron concentrate with 60.89% of Fe was gained as tailings among sulfidization flotation. The recoveries of Pb, Ag and Fe were 89.57%, 87.85% and 88.58%, respectively. The results indicate that this method is a feasible and promising process for the comprehensive utilization of sintering dust.
基金Supported by Binzhou Social Sciences Planning Project in 2024(24-SKGH-051)Binzhou Comprehensive Experimental Station Project of Shandong Provincial Forage Industry Technology System(SDAIT-23-10).
文摘This paper investigated and analyzed the conservation and utilization of four local livestock breeds in Binzhou City:Wadi Sheep,Bohai Black Cattle,Wudi Donkey,and Lubei White Goat.Shortcomings in the protection and utilization of local germplasm resources were pointed out,and strategies and recommendations were proposed to promote high-quality development of livestock and poultry genetic resources in Binzhou,including building a solid germplasm foundation,standardizing production,and driving innovation.This paper provides references for the conservation,development,and utilization of local genetic resources in Binzhou City.
文摘1. The natural economic conditions of yanchi county Yanchi County (in Ningxia Province, China) lies between the Muwus Desert and theLoess Plateau, its geographical location is a typical transition belt. The view from south tonorth: the general configuration of the earth’s surface is from the Loess Plateau to Ordos ta-bleland; the climate is from semi arid to arid. The transition of its geogrophical location pro-vides the area such features which are various,complex and fragile in natural conditions.
基金National Natural Science Foundation of China,No.41371002,No.41301355,No.41401113The Open Fund of State Key Laboratory of Remote Sensing Scienc,No.OFSLRSS201622
文摘Strategic transformation of regionalization for agricultural comprehensive development(ACD) was presented by the Ministry of Finance of the People's Republic of China(MOF) in 2014. The regionalization is the premise and basis of the sustainable development and improved competitiveness for agriculture. Based on the environmental resources related to agriculture, such as cropland, climate, water resources, terrain, geomorphology, patterns of the ACD projects, distribution of ecological planning, etc., we devised 13 indices using the geographic comprehensive regionalization method. The indices took into account a combination of dynamic and static, qualitative and quantitative, as well as agricultural and ecological factors. The strategic transformation of regionalization for the ACD in Ningxia Hui Autonomous Region of China was performed; seven types were included: prioritized regions, prioritized and restricted regions, protected regions, protected and restricted regions, restricted and prioritized regions, restricted and protected regions, and restricted regions. A further 24 subtypes were used based on locations and ecological zones. The regionalization results showed that prioritized regions were mainly in northern Ningxia, the most suitable area for agriculture. The protected and restricted regions were in central and southern Ningxia. In the central part, drought was the limiting factor for agriculture, and water conservation projects there should be supported. The ecological environment is fragile in southern Ningxia, so there is a need for ecologically sound agriculture to be developed in this region. Such regionaliza-tion could achieve two goals, namely agricultural conservation and eco-environmental protection. It was performed following the requirement for scientific regionalization to include three types of regions(prioritized regions, protected regions, and restricted regions), and was applied at the township scale in a provincial or autonomous region for the first time. The results provide both guidance for the strategic transformation of the ACD in Ningxia, and a reference for similar work in other provinces.
文摘China is a big country producing straw, and there are nearly 30 kinds of straw. There are huge resources hidden in straw, and nearly half of the nutrients absorbed by crops will remain in straw. In recent years, with the depletion of fossil energy and the deterioration of environmental conditions, the comprehensive utilization of straw resources has become a topic of increasing concern. Reasonable utilization of straw resources is of great significance to protect the environment, alleviate the energy crisis and promote social development. This paper introduces the present situation and existing problems of straw burning ban and straw comprehensive utilization in Taojiang County, which provides some references for strengthening straw burning ban and straw comprehensive utilization, effectively improving the quality of agricultural ecology and atmospheric environment, and promoting the sustainable development of agriculture.
基金financially supported by the National Science Foundation of China(No.51104034)the Fundamental Research Funds for the Central Universities(No.N130601003)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘The mineralogical characteristics of tantalumniobium ores from Songzi were investigated using mineral liberation analyzer (MLA) and chemical analysis. In particular, the chemical composition, phase composition, particle size, and dissemination characteristics of the ores were studied in detail. Results show that Ta2O5 and Nb2O5 have grades of 0.013 % and 0.011%, respectively. The main valuable minerals in the ores are tantalite, col- umbite, tantalum-niobite, and microlite, and the gangue minerals associated with tantalum-niobium minerals mainly include quartz, kaolinite, illite, feldspar, and mica among others. The minerals are embedded in a complex manner. Tantalum-niobium minerals with most particle sizes of -0.040 mm are disseminated in minerals, such as mica, illite, quartz, and partially intergrown with topaz and zircon, where they could not be easily liberated. Thus, the ores are classified as low-grade, micro-fine, and refractory tantalum-niobium ores. Based on this consideration, the process of classification-gravity concentration-magnetic separation-middlings regrinding and gravity concentration are finally determined and satisfactory indices are obtained. Two rough concentrates are produced: Concentrate I has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %. By comparison, Concentrate Ⅱ has Ta2O5 and Nb2O5 grades of 7.0292 % and 3.546 %, respectively, as well as recovery of 49.42 % and 35.46 %.
文摘Based on practical situation of rare earth industrial chain,production process and rare earth materials that could produce solid wastes on batch were discussed.Formation cause,formation volume,composition analysis and comprehensive utilization of the solid wastes of rare earth hydrometallurgy slag,electrolysis slag,Fe-based rare earth permanent magnetic materials,Co-based rare earth permanent magnetic materials,rare earth hydrogen storage materials,rare earth polishing powders and rare earth catalysts were ...
基金Sponsored by the Specialized Research Fund for the Doctoral Program of Higher Education of China(20100042110004)Fundamental Research Funds for the Central Universities of China(090502004,140206003)
文摘With the aim of high-efficiency utilization of Dandong ludwigite ore, a new process of metallizing reduction and mag- netic separation was proposed, and the effects of reduction temperature, reduction time, carbon ratio, ore size and coal size on the efficiency of the process were investigated in details, and relevant mechanisms were elucidated by SEM and EDS. The optimum technological parameters for metallizing reduction and magnetic separation on ludwigite ore were obtained as reduction tempera- ture of 1 250 ℃, reduction time of 60 min, carbon ratio of 1.4, ore size of 0.500-2.000 mm, and coal size of 0.50-1.50 mm. After adopting the optimum parameters, the iron content and recovery ratio of iron in magnetic substance are 87.78% and 88.02%, re- spectively, while the recovery ratios of boron, magnesium and silicon in non-magnetic substance are 88.86%, 94.60% and 98.66%, respectively. After metallizing reduction and magnetic separation, valuable elements of ludwigite ore could be separated and uti- lized in subsequent steelmaking process and hydrometallurgy process.