Anode active materials involving transition metal oxides and sulfides are of great significance for high energy density lithium-ion batteries(LIBs),but the huge volume expansion and inferior electronic conductivity up...Anode active materials involving transition metal oxides and sulfides are of great significance for high energy density lithium-ion batteries(LIBs),but the huge volume expansion and inferior electronic conductivity upon cycling critically constrain their further application.Herein,from a new perspective,a highly conductive and stable 3D flexible composite current collector is rationally designed by facilely electrodepositing metallic Ni thin layer onto the carbon cloth(CC/Ni),which endows the supported active materials with exceptional electronic conductivity and structural stability.In addition,the homogeneously distributed metallic Ni protrusions external CC can strongly bond with the active components,ensuring the structural integrity of electrodes upon cycling.More importantly,the 3D network structure with large specific surface area provides abundant space to alleviate the volume expansion and more active sites for electrochemical reactions.Therefore,taking Ni_(3)S_(2)nanosheet(Ni_(3)S_(2)NS)anode as an example,the prepared Ni_(3)S_(2)NS@CC/Ni electrode shows a high specific capacity of 2.32 mAh/cm^(2)at 1mA/cm^(2)and high capacity retention of 1.68 mAh/cm^(2)at a high rate of 8mA/cm^(2).This study provides a universal approach to obtain highly conductive and stable 3D flexible current collectors towards high performance metal-ion batteries beyond LIBs.展开更多
In the hostile and highly corrosive marine environment,advanced composite materials can be used in marine current turbines due to their high strength-to-weight ratios and excellent resistance to corrosion.A composite ...In the hostile and highly corrosive marine environment,advanced composite materials can be used in marine current turbines due to their high strength-to-weight ratios and excellent resistance to corrosion.A composite material marine current turbine(CMMCT),which has significant advantages over traditional designs,has been developed and investigated numerically.A substantial improvement in turbine performance is achieved by placement of a duct to concentrate the energy.Computational fluid dynamics(CFD) results show that the extracted power of a ducted CMMCT can be three to four times the power extracted by a bare turbine of the same turbine area.The results provide an insight into the hydrodynamic design and operation of a CMMCT used to shorten the design period and improve technical performance.展开更多
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix...A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.展开更多
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and...The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.展开更多
Lithium metal batteries(LMBs)offer high energy densities but face challenges including poor reversibility and Li dendrite growth.Herein,we evaluate two flexible composite current collectors composed of reduced graphen...Lithium metal batteries(LMBs)offer high energy densities but face challenges including poor reversibility and Li dendrite growth.Herein,we evaluate two flexible composite current collectors composed of reduced graphene oxide and carbon nanotubes(rGO/CNT)to investigate how Li storage mechanisms influence electrochemical performance.By modulating the number of layers in rGO,the few-layered rGO/CNT collector(FL-CC)stores Li through a pure plating mechanism,whereas the multi-layered rGO/CNT collector(ML-CC)stores lithium via a hybrid intercalation/plating mechanism.The hybrid mechanism in ML-CC promotes reversible Li-ion storage,reduces active Li-ion loss,and suppresses dendrite formation.As a result,ML-CC achieves superior cycling stability compared to FLCC in both LMBs and anode-free LMB tests paired with LiFePO_(4)cathodes at a practical areal capacity of 4.5 mAh cm^(-2).This study highlights the importance of structural design in current collectors and demonstrates that incorporating lithiatable materials can significantly enhance the electrochemical stability of anode-free LMBs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52075351,51604177)the National Key Research and Development Program of China(No.2019YFA0705701)+4 种基金the National Funded Postdoctoral Researcher Program(No.GZC20231762)the Major S&T Infrastructure Construction Project of Sichuan Province(No.2020-510000-73-01441847)the International S&T Innovation Cooperation Program of Sichuan Province(No.2020YFH0039)the Chengdu International S&T Cooperation Funded Project(Nos.2020-GH02-00006HZ,2022-GH02-00027-HZ)the“1000 Talents Plan”of Sichuan Province,and the Talent Introduction Program of Sichuan University(No.YJ201410)。
文摘Anode active materials involving transition metal oxides and sulfides are of great significance for high energy density lithium-ion batteries(LIBs),but the huge volume expansion and inferior electronic conductivity upon cycling critically constrain their further application.Herein,from a new perspective,a highly conductive and stable 3D flexible composite current collector is rationally designed by facilely electrodepositing metallic Ni thin layer onto the carbon cloth(CC/Ni),which endows the supported active materials with exceptional electronic conductivity and structural stability.In addition,the homogeneously distributed metallic Ni protrusions external CC can strongly bond with the active components,ensuring the structural integrity of electrodes upon cycling.More importantly,the 3D network structure with large specific surface area provides abundant space to alleviate the volume expansion and more active sites for electrochemical reactions.Therefore,taking Ni_(3)S_(2)nanosheet(Ni_(3)S_(2)NS)anode as an example,the prepared Ni_(3)S_(2)NS@CC/Ni electrode shows a high specific capacity of 2.32 mAh/cm^(2)at 1mA/cm^(2)and high capacity retention of 1.68 mAh/cm^(2)at a high rate of 8mA/cm^(2).This study provides a universal approach to obtain highly conductive and stable 3D flexible current collectors towards high performance metal-ion batteries beyond LIBs.
文摘In the hostile and highly corrosive marine environment,advanced composite materials can be used in marine current turbines due to their high strength-to-weight ratios and excellent resistance to corrosion.A composite material marine current turbine(CMMCT),which has significant advantages over traditional designs,has been developed and investigated numerically.A substantial improvement in turbine performance is achieved by placement of a duct to concentrate the energy.Computational fluid dynamics(CFD) results show that the extracted power of a ducted CMMCT can be three to four times the power extracted by a bare turbine of the same turbine area.The results provide an insight into the hydrodynamic design and operation of a CMMCT used to shorten the design period and improve technical performance.
基金financially supported by the Marine Renewable Energy Research Project of State Oceanic Administration of China(Grant No.GHME2013GC03)
文摘A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.
基金the financial support from the National Natural Science Foundation of China (52125301 and 52203123)the Fundamental Research Funds for the Central Universitiespartially sponsored by the Double First-Class Construction Funds of Sichuan University。
文摘The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea goverment(MSIT)(RS-2025-02218301)supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(No.RS-2024-00412289).
文摘Lithium metal batteries(LMBs)offer high energy densities but face challenges including poor reversibility and Li dendrite growth.Herein,we evaluate two flexible composite current collectors composed of reduced graphene oxide and carbon nanotubes(rGO/CNT)to investigate how Li storage mechanisms influence electrochemical performance.By modulating the number of layers in rGO,the few-layered rGO/CNT collector(FL-CC)stores Li through a pure plating mechanism,whereas the multi-layered rGO/CNT collector(ML-CC)stores lithium via a hybrid intercalation/plating mechanism.The hybrid mechanism in ML-CC promotes reversible Li-ion storage,reduces active Li-ion loss,and suppresses dendrite formation.As a result,ML-CC achieves superior cycling stability compared to FLCC in both LMBs and anode-free LMB tests paired with LiFePO_(4)cathodes at a practical areal capacity of 4.5 mAh cm^(-2).This study highlights the importance of structural design in current collectors and demonstrates that incorporating lithiatable materials can significantly enhance the electrochemical stability of anode-free LMBs.