期刊文献+
共找到19,256篇文章
< 1 2 250 >
每页显示 20 50 100
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
1
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures structural paranmeters
原文传递
Time-varying damage distribution of composite structures for a certain type of aircraft
2
作者 Jinxin DENG Ziqian AN +1 位作者 Peijie YUE Xiaoquan CHENG 《Chinese Journal of Aeronautics》 2025年第3期386-402,共17页
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c... The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time. 展开更多
关键词 AIRCRAFT composite structures structural damage Damage dis tribution Geonetric parameters
原文传递
Enhanced Flow Boiling Heat Transfer of HFE-7100 in Open Microchannels Using Micro-Nano Composite Structures
3
作者 Liaofei Yin Kexin Zhang +3 位作者 Tianjun Qin Wenhao Ma YiDing Yawei Xu 《Frontiers in Heat and Mass Transfer》 2025年第3期751-764,共14页
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho... Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty. 展开更多
关键词 Open microchannel laser ablation micro-nano composite structures flow boiling heat transfer enhancement
在线阅读 下载PDF
Free vibration of piezoelectric semiconductor composite structure with fractional viscoelastic layer
4
作者 Yansong LI Wenjie FENG Lei WEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期683-698,共16页
In this study,the free vibration of a piezoelectric semiconductor(PS)composite structure composed of a PS layer,a fractional viscoelastic layer,and an elastic substrate with simply-supported boundary conditions is inv... In this study,the free vibration of a piezoelectric semiconductor(PS)composite structure composed of a PS layer,a fractional viscoelastic layer,and an elastic substrate with simply-supported boundary conditions is investigated.The fractional derivative Zener model is used to establish the constitutive relation of the viscoelastic layer.The first-order shear deformation theory and Hamilton's principle are used to derive the motion equations of the present problem.The frequency parameter is numerically resolved with the Newton-Raphson method through the eigenvalue equation.The effects of either geometric parameters,carrier density,and electric voltage applied on the surface of the composite structure or the fractional order of the Zener model on both the natural frequency and loss factor are discussed,and some interesting conclusions are drawn.This work will be helpful for designing and manufacturing PS materials and structures. 展开更多
关键词 fractional viscoelastic material free vibration composite structure piezoelectric semiconductor(PS)
在线阅读 下载PDF
Failure behavior of rock and steel slag cemented paste backfill composite structures under uniaxial compression:Effects of interface angle and steel slag content
5
作者 HAO Jian-shuai ZHOU Zi-han +1 位作者 CHEN Zhong-hui CHE Zeng-hui 《Journal of Central South University》 2025年第7期2679-2695,共17页
The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the stre... The stability of the“surrounding rock-backfill”com posite system is crucial for the safety of mining stopes.This study systematically investigates the effects of steel slag(SS)content and interface angle on the strength and failure characteristics of rock and SS-cemented paste backfill composite specimens(RBCS)through uniaxial compression strength tests(UCS),acoustic emission systems(AE),and 3 D digital image correlation monitoring technology(3 D-DIC).The intrinsic mechanism by which SS content influences the strength of SS-CPB was revealed through an analysis of its hydration reaction degree and microstructural characteristics under varying SS content.Moreover,a theoretical strength model incorporating different interface angles was developed to explore the impact of interface inclination on failure modes and mechanical strength.The main conclusions are as follows:The incorporation of SS enhances the plastic characteristics of RBCS and reduces its brittleness,with the increase of SS content,the stress-strain curve of RBCS in the“staircase-like”stag e becomes smoother;When the interface angle is 45°,the RBCS stress-strain curve exhibits a bimodal feature,and the failure mode changes from Y-shaped fractures to interface and axial splitting;The addition of SS results in a reduction of hydration products such as Ca(OH)_(2) in the backfill cementing system and an increase in harmful pores,which weakens the bonding performance and strength of RBCS,and the SS content should not exceed 45%;As the interface angle increases,the strength of RBCS decreases,and the critical interface slip angle decreases first and then increases with the increase in the E S/E R ratio.This study provides technical references for the large-scale application of SS in mine backfill. 展开更多
关键词 steel slag-cemented paste backfill interface angle rock-backfill composite structures failure mode
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
6
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
7
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
8
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
9
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
10
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
Theoretical Study and Slip Effect Analysis of Elastic Calculation Methods for Steel-Concrete Composite Beams
11
作者 Shaohui Chu Xiangkai Zeng Zhixin Guo 《Journal of World Architecture》 2025年第5期67-74,共8页
Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bear... Steel-concrete composite beams,due to their superior mechanical properties,are widely utilized in engineering structures.This study systematically investigates the calculation methods for internal forces and load-bearing capacity of composite beams based on elastic theory,with a focus on the transformed section method and its application under varying neutral axis positions.By deriving the geometric characteristics of the transformed section and incorporating a reduction factor accounting for slip effects,a computational model for sectional stress and ultimate load-bearing capacity is established.The results demonstrate that the slip effect significantly influences the flexural load-bearing capacity of composite beams.The proposed reduction factor,which considers the influence of the steel beam’s top flange thickness,offers higher accuracy compared to traditional methods.These findings provide a theoretical foundation for the design and analysis of composite beams,with significant practical engineering value. 展开更多
关键词 composite beam elastic calculation Slip effect Theoretical study
在线阅读 下载PDF
Effects of composition ratio of TiCu precursor on dealloying behavior in molten Mg and microstructural characteristics of Mg-Ti composites
12
作者 Jee Eun Jang Bo Hyun Park +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 2025年第6期2784-2799,共16页
Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.T... Metal composites produced through the liquid metal dealloying(LMD)process feature an advanced matrix-matrix composite structure,where two metallic materials form a continuous,three-dimensional interconnected network.This study investigates the effects of Ti Cu precursor compositions on dealloying behavior and microstructural evolution in liquid Mg,using Ti_(50)Cu_(50)and Ti_(30)Cu_(70)precursors.The initial microstructure of the precursor significantly influences dealloying kinetics and phase transitions.The single-phase Ti_(50)Cu_(50)precursor exhibits a faster initial dealloying rate due to its homogeneous structure,yet complete dealloying requires 90 min.In contrast,the dualphase Ti_(30)Cu_(70)precursor achieves complete dealloying in 30 min,demonstrating the impact of a higher Cu concentration on accelerating the process kinetics.Additionally,the study explores the coarsening behavior and hardness variations during the LMD process,along with the microstructural characteristics of Mg-Ti composites fabricated from these two precursors.The findings highlight the critical role of precursor composition in tailoring the microstructure and properties of Mg-Ti composites produced through the LMD process,demonstrating its potential for advanced composite material manufacturing. 展开更多
关键词 Liquid metal dealloying Precursor composition Mg-Ti composite 3D interconnected structure HARDNESS
在线阅读 下载PDF
Factors Affecting Resin Mineral Composites'Effective Elastic Modulus
13
作者 LONG Yunfang ZHANG Jianhua +1 位作者 NIU Shuo GU Weizhou 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1488-1498,共11页
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material... We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward. 展开更多
关键词 resin mineral composites homogenization methods hybrid inclusion modeling elastic modulus MICROMECHANICS
原文传递
Experimental investigation on the anti-detonation performance of composite structure containing foam geopolymer backfill material
14
作者 Hang Zhou Hujun Li +6 位作者 Zhen Wang Dongming Yan Wenxin Wang Guokai Zhang Zirui Cheng Song Sun Mingyang Wang 《Defence Technology(防务技术)》 2025年第1期304-318,共15页
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several... The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters. 展开更多
关键词 Explosion load composite structure Geopolymer foam Energy absorption
在线阅读 下载PDF
A pre-strain strategy for suppressing interfacial debonding in carbon fiber structural battery composites
15
作者 Chuanxi HU Bo LU +2 位作者 Yinhua BAO Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1699-1714,共16页
This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fi... This study proposes a pre-strain optimization strategy for carbon fiber structural lithium-ion battery(SLIB) composites to inhibit the interfacial debonding between carbon fibers and solid-state electrolytes due to fiber lithiation. Through an analytical shear-lag model and finite element simulations, it is demonstrated that applying tensile pre-strain to carbon fibers before electrode assembly effectively reduces the interfacial shear stress, thereby suppressing debonding. However, the excessive pre-strain can induce the interfacial damage in the unlithiated state, necessitating careful control of the pre-strain within a feasible range. This range is influenced by electrode material properties and geometric parameters. Specifically, the electrodes with the higher solid-state electrolyte elastic modulus and larger electrolyte volume fraction exhibit more significant interfacial damage, making pre-strain application increasingly critical. However, these conditions also impose stricter constraints on the feasible pre-strain range. By elucidating the interplay between pre-strain, material properties, and geometric factors, this study provides valuable insights for optimizing the design of carbon fiber SLIBs. 展开更多
关键词 PRE-STRAIN carbon fiber interfacial debonding structural battery composite mechanically-based design
在线阅读 下载PDF
Guided Wave Based Composite Structural Fatigue Damage Monitoring Utilizing the WOA-BP Neural Network
16
作者 Borui Wang Dongyue Gao +2 位作者 Haiyang Gu Mengke Ding Zhanjun Wu 《Computers, Materials & Continua》 2025年第4期455-473,共19页
Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approac... Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage. 展开更多
关键词 structural health monitoring ultrasonic guided wave composite structural fatigue damage monitoring WOA-BP neural network relief-F algorithm
在线阅读 下载PDF
Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring
17
作者 Yong Ao Long Jin +10 位作者 Shenglong Wang Bolin Lan Guo Tian Tianpei Xu Longchao Huang Zihan Wang Yue Sun Tao Yang Weili Deng Fan Yang Weiqing Yang 《Nano-Micro Letters》 2025年第12期526-539,共14页
The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena ... The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance.Here,we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite,whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design.Synergistically,molecular dynamics simulations,density functional theory calculations and experimental validation revealed the details of interfacial interactions,which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye.The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region,along with demonstrating cyclic stability exceeding 20,000 cycles.The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation.Attributed to the excellent piezoelectric response and deep learning algorithm,the sensor can effectively recognize the signals of artery pulse and finger flexion.Finally,a 3×3 sensor array is fabricated to monitor the pressure distribution wirelessly.This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs. 展开更多
关键词 Piezoelectric composite MXene/PVDF-TrFE Interfacial polarization structural engineering
在线阅读 下载PDF
Development of Interpenetrating Phase Structure AZ91/Al_(2)O_(3)Composites with High Stiffness,Superior Strength and Low Thermal Expansion Coefficient
18
作者 Zhiqing Chen Zhixian Zhao +6 位作者 Yiqiang Hao Xiaoling Chen Liping Zhou Jingya Wang Tao Ying Bin Chen Xiaoqin Zeng 《Acta Metallurgica Sinica(English Letters)》 2025年第2期245-258,共14页
Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive perform... Mg alloys have the defects of low stiffness,low strength,and high coefficient of thermal expansion(CTE).The composites strategy and its architecture design are effective approaches to improve the comprehensive performance of materials,but the processing difficulty,especially in ceramics forming,limits the control and innovation of material architecture.Here,combined with 3D printing and squeeze infiltration technology,two precisely controllable architectures of AZ91/Al_(2)O_(3)interpenetrating phase composites(IPC)with ceramic scaffold were prepared.The interface,properties and impact of different architecture on IPC performance were studied by experiments and finite element simulation.The metallurgical bonding of the interface was realized with the formation of MgAl_(2)O_(4)reaction layer.The IPC with 1 mm circular hole scaffold(1C-IPC)exhibited significantly improved elastic modulus of 164 GPa,high compressive strength of 680 MPa,and good CTE of 12.91×10^(-6)K^(−1),which were 3.64 times,1.98 times and 55%of the Mg matrix,respectively.Their elastic modulus,compressive strength,and CTE were superior to the vast majority of Mg alloys and Mg based composites.The reinforcement and matrix were bicontinuous and interpenetrating each other,which played a critical role in ensuring the potent strengthening effect of the Al_(2)O_(3)reinforcement by efficient load transfer.Under the same volume fraction of reinforcements,compared to IPC with 1 mm hexagonal hole scaffold(1H-IPC),the elastic modulus and compressive strength of 1C-IPC increased by 15%and 28%,respectively,which was due to the reduced stress concentration and more uniform stress distribution of 1C-IPC.It shows great potential of architecture design in improving the performance of composites.This study provides architectural design strategy and feasible preparation method for the development of high performance materials. 展开更多
关键词 Interpenetrating phase composites Al_(2)O_(3)/Mg composites Interface elastic modulus Compressive strength Coefficient of thermal expansion(CTE)
原文传递
Focal volume optics for composite structuring in transparent solids
19
作者 Bo Zhang Zhuo Wang +3 位作者 Dezhi Tan Min Gu Yuanzheng Yue Jianrong Qiu 《International Journal of Extreme Manufacturing》 2025年第1期357-366,共10页
Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing researc... Achieving high-level integration of composite micro-nano structures with different structural characteristics through a minimalist and universal process has long been the goal pursued by advanced manufacturing research but is rarely explored due to the absence of instructive mechanisms.Here,we revealed a controllable ultrafast laser-induced focal volume light field and experimentally succeeded in highly efficient one-step composite structuring in multiple transparent solids.A pair of spatially coupled twin periodic structures reflecting light distribution in the focal volume are simultaneously created and independently tuned by engineering ultrafast laser-matter interaction.We demonstrated that the generated composite micro-nano structures are applicable to multi-dimensional information integration,nonlinear diffractive elements,and multi-functional optical modulation.This work presents the experimental verification of highly universal all-optical fabrication of composite micro-nano structures with independent controllability in multiple degrees of freedom,expands the current cognition of ultrafast laser-based material modification in transparent solids,and establishes a new scientific aspect of strong-field optics,namely,focal volume optics for composite structuring transparent solids. 展开更多
关键词 ultrafast laser focal volume light field composite structuring transparent solids advanced manufacturing
在线阅读 下载PDF
Improved resistance to creep and underlying mechanisms in TiB/(TA15−Si)composites with network structure
20
作者 Shuai WANG Rui ZHANG +5 位作者 Ming JI Feng-bo SUN Zi-shuo MA Qi AN Lu-jun HUANG Lin GENG 《Transactions of Nonferrous Metals Society of China》 2025年第10期3357-3367,共11页
To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and v... To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2). 展开更多
关键词 discontinueously reinforced titanium matrix composite TiB whisker network structure SILICIDES creep properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部