[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO...[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.展开更多
Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phas...Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).展开更多
The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance ...The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst.In this paper,Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O(BBN)and ZnO are used to construct and synthesize Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O/ZnO(BBN/ZnO)heterojunction photocatalyst.Under UV-vis light irradiation,the BBN/ZnO composite could generate H_(2)with a rate of 28.66μmol·g^(−1)·h^(−1),which is higher than pure BBN(0.92μmol·g^(−1)·h^(−1))and ZnO(6.54μmol·h^(−1)·g^(−1))at around 31.1 and 4.4 times,respectively.Moreover,the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles.The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range,reduced surface migration resistance,and inhibited recombination of photo-generated electron and hole pairs.展开更多
文摘[Zn(CH3COO)2 + PVP]/[C2H5O)4Si + PVP]/[SnCl4 + PVP]/[Ti(OC4H9)4 + CH3COOH + PVP] precursor composite fibers have been fabricated through self-made electrospinning equipment via electrospinning tech-nique. ZnO/SiO2/SnO2/TiO2 composite nanofibers were obtained by calcination of the relevant precursor composite fibers. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). TG-DTA analysis reveals that solvents, organic compounds and inorganic in the precursor composite fibers are decomposed and volatilized totally, and the mass of the samples kept constant when sintering temperature was above 900?C, and the total mass loss percentage is 88%. XRD results show that the precursor composite fibers are amorphous in structure, and pure phase ZnO/SiO2/SnO2/TiO2 com-posite nanofibers are obtained by calcination of the relevant precursor composite fibers. FTIR analysis manifests that pure inorganic oxides are formed. SEM analysis indicates that the width of the precursor composite fibers is ca. 1.485 ± 0.043 μm. The width of the ZnO/SiO2/SnO2/TiO2 composite nanofibers is ca. 1145.098 ± 68.093 nm.
基金sponsored by the Natural Science Foundation of China (Grant nos. 51775208)the Hubei Science Fund for Distinguished Young Scholars (No. 0216110085)+2 种基金the National Key Research and Development Program “Additive Manufacturing and Laser Manufacturing”(No. 2016YFB1100101)Wuhan Morning Light Plan of Youth Science and Technology (No. 0216110066)the Academic frontier youth team at Huazhong University of Science and Technology (HUST)
文摘Ag/SnO2,as a promising and environment-friendly electrical contact material,is widely applied in low-voltage apparatus.But the properties of Ag/SnO2 composites is difficult to improve due to the poor distribution phases and difficult component design.In this work,the Ag/SnO2 composites are prepared by selective laser melting.To get better performance,Ag/SnO2 composites with different energy density were studied.The microstructure was observed by field emission scanning electron microscope.In addition,reinforced SnO2 phase was characterized by X-ray diffraction and transmission electron microscope.The results indicated that the microstructure,relative density and hardness of are influenced by energy density,while Ag/SnO2 composites with homogeneous microstructure,high relative density,higher hardness and lower electrical resistivity can be obtained by proper energy density(E?68 J/mm^3).
基金This work was supported by the Natural Science Foundation of Fujian Province[2020J01833]the Fujian Engineering Research Center of New Chinese lacquer Material[No.323030030702]+3 种基金the humbly acknowledge international funding provided by Fujian Agriculture and Forestry University[No.KXB16001A]the Education Research Program for Young and Middle-aged Teachers of Fujian Education Department[No.JAT190132]the open fund of the Key Laboratory of National Forestry&Grassland Bureau for Plant Fiber Functional Materials,Fujian Agriculture and Forestry University[No.2019KFJJ15]Key Laboratory of New Functional Textile Fiber and Material of Fujian Province will open fund project in 2020[MJUKF-FMSM202005,FKLTF 1708].
文摘The heterojunction effect can effectively improve the separation efficiency of the photocatalyst’s photo-generated electron and hole pairs,thereby greatly improving the photocatalytic hydrogen production performance of the photocatalyst.In this paper,Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O(BBN)and ZnO are used to construct and synthesize Bi_(6)O_(6)(OH)_(3)(NO_(3))_(3)·1.5H_(2)O/ZnO(BBN/ZnO)heterojunction photocatalyst.Under UV-vis light irradiation,the BBN/ZnO composite could generate H_(2)with a rate of 28.66μmol·g^(−1)·h^(−1),which is higher than pure BBN(0.92μmol·g^(−1)·h^(−1))and ZnO(6.54μmol·h^(−1)·g^(−1))at around 31.1 and 4.4 times,respectively.Moreover,the experimental results found that the composite still exhibits excellent photocatalytic activity and maintains a high and stable activity in the 12-hour experiment with 3 cycles.The possible mechanism to enhance the photocatalytic behavior is attributed to the expanded light absorption range,reduced surface migration resistance,and inhibited recombination of photo-generated electron and hole pairs.