Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC...Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.展开更多
The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of build...The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.展开更多
5 critical quality characteristics must be controlled in the surface mount and wire-bond process in semiconductor packaging.And these characteristics are correlated with each other.So the principal components analysis...5 critical quality characteristics must be controlled in the surface mount and wire-bond process in semiconductor packaging.And these characteristics are correlated with each other.So the principal components analysis(PCA)is used in the analysis of the sample data firstly.And then the process is controlled with hotelling T^2 control chart for the first several principal components which contain sufficient information.Furthermore,a software tool is developed for this kind of problems.And with sample data from a surface mounting device(SMD)process,it is demonstrated that the T^2 control chart with PCA gets the same conclusion as without PCA,but the problem is transformed from high-dimensional one to a lower dimensional one,i.e.,from 5 to 2 in this demonstration.展开更多
With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistica...With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression (PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor- mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide polymorphism (SNP) set region. We found that PC-LR and PLS can reasonably control type I error under null hypothesis. On contrast, LR, which is corrected by Bonferroni method, was more conserved in all simulation settings. In particular, we found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data.展开更多
The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of t...The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of the multi-block statistical method known as common components and specific weights analysis.The three methods were applied to a set of data to show the differences and similarities of the results obtained,highlighting their complementarity.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical ev...[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical evaluation model for chilling tolerance of cotton, thus providing theoretical basis for breeding and promoting new chilling-tolerant cotton germplasms and large-scale evaluation of chilling tolerance of cotton varieties. [Method] Fifteen cotton varieties (lines) were used as experimental materials. The photosynthetic gas exchange parameters, chlorophyll fluorescence ki- netic parameters, chlorophyll content, relative soluble sugar content, malonaldehyde content, relative proiine content, relative conductivity and other 12 physiological indi- cators of seedling leaves under low temperature treatment (5 ℃, 12 h) and recovery treatment (25 ℃. 24 h) were determined; based on the chilling tolerance coefficient (CTC) of various individual indicators, the comprehensive evaluation of chilling toler- ance was conducled by using principal component analysis, hierarchical cluster anal- ysis and stepwise regression analysis. [Result] The results showed that the 12 indi- vidual physiological indicators could be classified into 7 independent comprehensive components by principal component analysis; 15 cotton varieties (lines) were clus- tered into three categories by using membership function method and hierarchical cluster analysis; the mathematical model for evaluating chilling tolerance of cotton seedlings was established: D =0.275 -0.244Fo1 +0.206Fv/Fm1+0.326g,%-0.056SS + 0.225MDA+O.O38REC (FF=0.995), and the evaluation accuracy of the equation was higher than 94.25%,0. Six identification indicators closely related to chilling tolerance were screened, including Fo,, Fv/Fm1, Seedling leaves of cotton varieties (lines) gs2, SS, MDA, and REC. [Conclusion] with high chilling tolerance are less dam- aged under low temperature stress, and are able to maintain relatively high photo- synthetic electron transport capacity and high stomatal conductance after recovery treatment, which is contributed to gas exchange and recovery of photosynthetic ca- pacity. Determination of the six indicators under the same stress condition can be adopted for rapid identification and prediction of the chilling tolerance of other cotton varieties, which provides basis for the breeding, promotion, identification and screen- ing of chilling tolerant germplasms.展开更多
Purpose:This study analyzes the profiles of elite Brazilian researchers,recognized through the prestigious CNPq productivity scholarships.By identifying distinct researcher clusters,the study sheds light on different ...Purpose:This study analyzes the profiles of elite Brazilian researchers,recognized through the prestigious CNPq productivity scholarships.By identifying distinct researcher clusters,the study sheds light on different academic strategies,levels of productivity,and academic contributions within the Brazilian higher education system.Design/methodology/approach:The research analyzes a comprehensive dataset of 14,003 researchers,employing principal component analysis(PCA)followed by cluster analysis to group researchers based on their academic attributes.The clusters reflect diverse aspects of research productivity,graduate supervisions,and publication patterns.Findings:The analysis reveals the existence of three distinct researcher profiles(the Advanced Supervisors,the Book Publishers/Organizers,and the Generalists).The study also highlights the characteristics of highcaliber scientists,representing the upper echelon of Brazilian researchers in terms of productivity and impact.Research limitations:Although the study provides a robust analysis of the Brazilian system,the results reflect specific characteristics of the Brazilian academic context.Furthermore,the analysis was restricted to normalized annual data,which may overlook temporal variations in researcher productivity.Pratical implications:The findings provide valuable insights for policy makers,funding agencies(such as CNPq),and university administrators who aim to develop tailored support programs for different researcher profiles.Originality/value:The cluster-based profiling offers a novel perspective on how different academic trajectories coexist within a national science system,offering lessons for other emerging economies.展开更多
The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This...The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application.展开更多
Comprehensive evaluation based on mineral element content is one of the effective methods for the exploration and utilization of wild tulip germplasm resources.In this study,Tulipa iliensis,Tulipa tianschanica and Tul...Comprehensive evaluation based on mineral element content is one of the effective methods for the exploration and utilization of wild tulip germplasm resources.In this study,Tulipa iliensis,Tulipa tianschanica and Tulipa heterophylla distributed in China were used as the research objects.The contents of 10mineral elements(N,K,P,S,Ca,Mg,Cu,Zn,Fe,Mn)in roots,bulbs and leaves were determined,and the three wild tulips were comprehensively evaluated by correlation analysis,principal component analysis and cluster analysis.The results showed distinct variations in mineral element content among different organs of T.iliensis,T.tianschanica and T.heterophylla,with T.heterophylla exhibiting significantly higher mineral content across all organs compared to the other two wild tulips.Correlation analysis revealed significant(p<0.05)inter-element relationships in T.iliensis,T.tianschanica and T.heterophylla,with positive correlations between N and P,Ca and Zn in roots,P and Mg,P and Cu,Mg and Cu in bulbs,K and Mg,K and Fe,Zn and Mn,Mg and Fe in leaves,alongside a negative S and Fe correlation in leaves.The comprehensive evaluation identified N,S,Ca,and Zn as representative elements for assessing the three wild tulips,with their abundance ranking as follows:T.heterophylla>T.iliensis>T.tianschanica.The results of cluster analysis showed that T.heterophylla was clustered into one category in the roots because of the rich content of mineral elements.T.iliensis and T.tianschanica were clustered into one category in the bulbs because the accumulation of S element was higher than T.heterophylla.T.iliensis and T.heterophylla were clustered into one category in the leaves because of the rich content of mineral elements.The distribution of diverse mineral elements enables wild tulip germplasm resources to adapt to varied natural habitats,playing a decisive role in their response to specific environmental stresses.Studying mineral elements is an important way to gain an in-depth understanding of tulip germplasm resources.The results are of practical significance for conserving wild tulip resources and achieving sustainable utilization.展开更多
Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamformin...Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.展开更多
Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Wa...Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.展开更多
This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric...This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January.展开更多
We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of t...We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state.展开更多
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experim...[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield.展开更多
[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal ...[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco.展开更多
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori...In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
基金funding from the National Natural Science Foundation of China (Grant No.42277175)the pilot project of cooperation between the Ministry of Natural Resources and Hunan Province“Research and demonstration of key technologies for comprehensive remote sensing identification of geological hazards in typical regions of Hunan Province” (Grant No.2023ZRBSHZ056)the National Key Research and Development Program of China-2023 Key Special Project (Grant No.2023YFC2907400).
文摘Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability.
基金Supported by Scientific Research Project for Commonwealth (GYHY200806017)Innovation Project for Graduate of Jiangsu Province (CX09S-018Z)
文摘The evaluation model was established to estimate the number of houses collapsed during typhoon disaster for Zhejiang Province.The factor leading to disaster,the environment fostering disaster and the exposure of buildings were processed by Principal Component Analysis.The key factor was extracted to support input of vector machine model and to build an evaluation model;the historical fitting result kept in line with the fact.In the real evaluation of two typhoons landed in Zhejiang Province in 2008 and 2009,the coincidence of evaluating result and actual value proved the feasibility of this model.
基金This project is supported by National Natural Science Foundation of China(No.70372062)Hi-Tech Program of Tianjin city,China(No.04310881R).
文摘5 critical quality characteristics must be controlled in the surface mount and wire-bond process in semiconductor packaging.And these characteristics are correlated with each other.So the principal components analysis(PCA)is used in the analysis of the sample data firstly.And then the process is controlled with hotelling T^2 control chart for the first several principal components which contain sufficient information.Furthermore,a software tool is developed for this kind of problems.And with sample data from a surface mounting device(SMD)process,it is demonstrated that the T^2 control chart with PCA gets the same conclusion as without PCA,but the problem is transformed from high-dimensional one to a lower dimensional one,i.e.,from 5 to 2 in this demonstration.
基金founded by the National Natural Science Foundation of China(81202283,81473070,81373102 and81202267)Key Grant of Natural Science Foundation of the Jiangsu Higher Education Institutions of China(10KJA330034 and11KJA330001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(20113234110002)the Priority Academic Program for the Development of Jiangsu Higher Education Institutions(Public Health and Preventive Medicine)
文摘With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression (PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor- mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide polymorphism (SNP) set region. We found that PC-LR and PLS can reasonably control type I error under null hypothesis. On contrast, LR, which is corrected by Bonferroni method, was more conserved in all simulation settings. In particular, we found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data.
文摘The aim of this work is to describe and compare three exploratory chemometrical tools,principal components analysis,independent components analysis and common components analysis,the last one being a modification of the multi-block statistical method known as common components and specific weights analysis.The three methods were applied to a set of data to show the differences and similarities of the results obtained,highlighting their complementarity.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
基金Supported by"11thFive-Year Plan"National Science and Technology Support Program(2009BADA4B01-3)~~
文摘[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical evaluation model for chilling tolerance of cotton, thus providing theoretical basis for breeding and promoting new chilling-tolerant cotton germplasms and large-scale evaluation of chilling tolerance of cotton varieties. [Method] Fifteen cotton varieties (lines) were used as experimental materials. The photosynthetic gas exchange parameters, chlorophyll fluorescence ki- netic parameters, chlorophyll content, relative soluble sugar content, malonaldehyde content, relative proiine content, relative conductivity and other 12 physiological indi- cators of seedling leaves under low temperature treatment (5 ℃, 12 h) and recovery treatment (25 ℃. 24 h) were determined; based on the chilling tolerance coefficient (CTC) of various individual indicators, the comprehensive evaluation of chilling toler- ance was conducled by using principal component analysis, hierarchical cluster anal- ysis and stepwise regression analysis. [Result] The results showed that the 12 indi- vidual physiological indicators could be classified into 7 independent comprehensive components by principal component analysis; 15 cotton varieties (lines) were clus- tered into three categories by using membership function method and hierarchical cluster analysis; the mathematical model for evaluating chilling tolerance of cotton seedlings was established: D =0.275 -0.244Fo1 +0.206Fv/Fm1+0.326g,%-0.056SS + 0.225MDA+O.O38REC (FF=0.995), and the evaluation accuracy of the equation was higher than 94.25%,0. Six identification indicators closely related to chilling tolerance were screened, including Fo,, Fv/Fm1, Seedling leaves of cotton varieties (lines) gs2, SS, MDA, and REC. [Conclusion] with high chilling tolerance are less dam- aged under low temperature stress, and are able to maintain relatively high photo- synthetic electron transport capacity and high stomatal conductance after recovery treatment, which is contributed to gas exchange and recovery of photosynthetic ca- pacity. Determination of the six indicators under the same stress condition can be adopted for rapid identification and prediction of the chilling tolerance of other cotton varieties, which provides basis for the breeding, promotion, identification and screen- ing of chilling tolerant germplasms.
文摘Purpose:This study analyzes the profiles of elite Brazilian researchers,recognized through the prestigious CNPq productivity scholarships.By identifying distinct researcher clusters,the study sheds light on different academic strategies,levels of productivity,and academic contributions within the Brazilian higher education system.Design/methodology/approach:The research analyzes a comprehensive dataset of 14,003 researchers,employing principal component analysis(PCA)followed by cluster analysis to group researchers based on their academic attributes.The clusters reflect diverse aspects of research productivity,graduate supervisions,and publication patterns.Findings:The analysis reveals the existence of three distinct researcher profiles(the Advanced Supervisors,the Book Publishers/Organizers,and the Generalists).The study also highlights the characteristics of highcaliber scientists,representing the upper echelon of Brazilian researchers in terms of productivity and impact.Research limitations:Although the study provides a robust analysis of the Brazilian system,the results reflect specific characteristics of the Brazilian academic context.Furthermore,the analysis was restricted to normalized annual data,which may overlook temporal variations in researcher productivity.Pratical implications:The findings provide valuable insights for policy makers,funding agencies(such as CNPq),and university administrators who aim to develop tailored support programs for different researcher profiles.Originality/value:The cluster-based profiling offers a novel perspective on how different academic trajectories coexist within a national science system,offering lessons for other emerging economies.
基金supported by the Natural Science Foundation of China(Grant Nos.42374032,42174103,42004073)Provincial Natural Science Foundation(2024JJ8348)the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y01)。
文摘The Global Navigation Satellite System(GNSS)is vital for monitoring terrestrial water storage(TWS).However,effectively extracting hydrological load deformation from GNSS observations poses a significant challenge.This study proposes a novel strategy;the seasonal hydrological load signals are removed from the raw data,and the remaining signals use principal component analysis(PCA).Simulation results from Yunnan Province demonstrate that the spatial distribution of the root mean square error(RMSE)is improved by approximately 15% compared with traditional PCA extraction from raw data.From January 2013 to December 2022,TWS was inverted from 24 GNSS stations in Yunnan Province.The spatial distribution and time series of TWS inverted from GNSS align well with those TWS inferred from the Gravity Recovery and Climate Experiment(GRACE),GRACE Follow-On(GFO),and the Global Land Data Assimilation System(GLDAS)land surface model.However,the amplitude of the GNSS-inverted TWS is slightly higher.Since GNSS ground stations are more sensitive to hydrological load signals,they show correlations with precipitation data that are 8.6%and 6.0%higher than those of GRACE and GLDAS,respectively.In the power spectral density analysis of GRACE/GFO,GLDAS,and GNSS,the signal strength of GNSS is much higher than that of GRACE/GFO and GLDAS in the June and February cycles.These findings suggest that the new data extraction strategy can capture higher frequency hydrological signals in TWS,and GNSS observations can help address limitations in GRACE/GFO observations.This study demonstrates the potential of GNSS TWS in capturing higher-frequency hydrological signals and climate extremes application.
基金supported by the“Natural Science Foundation Project of Qinghai Province,China[2025-ZJ-950M]”and“West Light Foundation.Chinese Academy of Science[1–7]”.
文摘Comprehensive evaluation based on mineral element content is one of the effective methods for the exploration and utilization of wild tulip germplasm resources.In this study,Tulipa iliensis,Tulipa tianschanica and Tulipa heterophylla distributed in China were used as the research objects.The contents of 10mineral elements(N,K,P,S,Ca,Mg,Cu,Zn,Fe,Mn)in roots,bulbs and leaves were determined,and the three wild tulips were comprehensively evaluated by correlation analysis,principal component analysis and cluster analysis.The results showed distinct variations in mineral element content among different organs of T.iliensis,T.tianschanica and T.heterophylla,with T.heterophylla exhibiting significantly higher mineral content across all organs compared to the other two wild tulips.Correlation analysis revealed significant(p<0.05)inter-element relationships in T.iliensis,T.tianschanica and T.heterophylla,with positive correlations between N and P,Ca and Zn in roots,P and Mg,P and Cu,Mg and Cu in bulbs,K and Mg,K and Fe,Zn and Mn,Mg and Fe in leaves,alongside a negative S and Fe correlation in leaves.The comprehensive evaluation identified N,S,Ca,and Zn as representative elements for assessing the three wild tulips,with their abundance ranking as follows:T.heterophylla>T.iliensis>T.tianschanica.The results of cluster analysis showed that T.heterophylla was clustered into one category in the roots because of the rich content of mineral elements.T.iliensis and T.tianschanica were clustered into one category in the bulbs because the accumulation of S element was higher than T.heterophylla.T.iliensis and T.heterophylla were clustered into one category in the leaves because of the rich content of mineral elements.The distribution of diverse mineral elements enables wild tulip germplasm resources to adapt to varied natural habitats,playing a decisive role in their response to specific environmental stresses.Studying mineral elements is an important way to gain an in-depth understanding of tulip germplasm resources.The results are of practical significance for conserving wild tulip resources and achieving sustainable utilization.
基金supported by the National Key Research and Development Plan of China(No.2023YFB3406500)the National Natural Science Foundation of China(No.52475132)+2 种基金the Aeronautical Science Foundation of China(No.20200015053001)the Shaanxi Key Research Program Project,China(No.2024GX-ZDCYL-01–16)the Xi’an Key Industrial Chain Technology Research Project,China(No.2023JH-RGZNGG-0033)。
文摘Traditional beamforming techniques may not accurately locate sources in scenarios with both stationary and rotating sound sources.The existence of rotating sound sources can cause blurring in the stationary beamforming map.Current algorithms for separating different moving sound sources have limited effectiveness,leading to significant residual noise,especially when the rotating source is strong enough to mask stationary sources completely.To overcome these challenges,a novel solution utilizing a virtual rotating array in the modal domain combined with robust principal component analysis is proposed to separate sound sources with different rotational speeds.This approach,named Robust Principal Component Analysis in the Modal domain(RPCA-M),investigates the performance of convex nuclear norm and non-convex Schatten-p norm to distinguish stationary and rotating sources.By comparing the errors in Cross-Spectral Matrix(CSM)recovery and acoustic imaging across different algorithms,the effectiveness of RPCA-M in separating stationary and moving sound sources is demonstrated.Importantly,this method effectively separates sound sources,even when there are significant variations in their amplitudes at different rotation speeds.
文摘Groundwater is a crucial water source for urban areas in Africa, particularly where surface water is insufficient to meet demand. This study analyses the water quality of five shallow wells (WW1-WW5) in Half-London Ward, Tunduma Town, Tanzania, using Principal Component Analysis (PCA) to identify the primary factors influencing groundwater contamination. Monthly samples were collected over 12 months and analysed for physical, chemical, and biological parameters. The PCA revealed between four and six principal components (PCs) for each well, explaining between 84.61% and 92.55% of the total variance in water quality data. In WW1, five PCs captured 87.53% of the variability, with PC1 (33.05%) dominated by pH, EC, TDS, and microbial contamination, suggesting significant influences from surface runoff and pit latrines. In WW2, six PCs explained 92.55% of the variance, with PC1 (36.17%) highlighting the effects of salinity, TDS, and agricultural runoff. WW3 had four PCs explaining 84.61% of the variance, with PC1 (39.63%) showing high contributions from pH, hardness, and salinity, indicating geological influences and contamination from human activities. Similarly, in WW4, six PCs explained 90.83% of the variance, where PC1 (43.53%) revealed contamination from pit latrines and fertilizers. WW5 also had six PCs, accounting for 92.51% of the variance, with PC1 (42.73%) indicating significant contamination from agricultural runoff and pit latrines. The study concludes that groundwater quality in Half-London Ward is primarily affected by a combination of surface runoff, pit latrine contamination, agricultural inputs, and geological factors. The presence of microbial contaminants and elevated nitrate and phosphate levels underscores the need for improved sanitation and sustainable agricultural practices. Recommendations include strengthening sanitation infrastructure, promoting responsible farming techniques, and implementing regular groundwater monitoring to safeguard water resources and public health in the region.
基金supported by the National Natural Science Foundation of China(Grant Numbers 42374195 and 42188101)the fellowship of China National Postdoctoral Program for Innovative Talents(Grant Number BX20230273)+1 种基金the Hubei Provincial Natural Science Foundation of China(Grant Number 2024AFB-097)the Postdoctor Project of Hubei Province(Grant Number 2024HBBHCXA054).
文摘This study employs Principal Component Analysis(PCA)and 13 years of SD-WACCM-X model data(2007-2019)to investigate the characteristics and mechanisms of Inter-hemispheric Coupling(IHC)triggered by sudden stratospheric warming(SSW)events.IHC in both hemispheres leads to a cold anomaly in the equatorial stratosphere,a warm anomaly in the equatorial mesosphere,and increased temperatures in the mesosphere and lower thermosphere(MLT)region of the summer hemisphere.However,the IHC features during boreal winter period are significantly weaker than during the austral winter period,primarily due to weaker stationary planetary wave activity in the Southern Hemisphere(SH).During the austral winter period,IHC results in a warm anomaly in the polar mesosphere of the SH,which does not occur in the NH during boreal winter period.This study also examines the possible influence of quasi-two-day waves(QTDWs)on IHC.We found that the largest temperature anomaly in the summer polar MLT region is associated with a large wind instability area,and a well-developed critical layer structure of QTDW in January.In contrast,during July,despite favorable conditions for QTDW propagation in the Northern Hemisphere,weaker IHC response is observed,suggesting that IHC features and the relationship with QTDWs during July would be more complex than during January.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104075 and 12347101).
文摘We study the influence of disorder on the Moore–Read state by principal component analysis(PCA),which is one of the ground state candidates for the 5/2 fractional Hall state.By using PCA,the topological features of the ground state wave functions with different disorder strengths can be distilled.As the disorder strength increases,the Moore–Read state will be destroyed.We explore the phase transition by analyzing the overlaps between the random sample wave functions and the topologically distilled state.The cross-point between the amplitudes of the principal component and its counterpart is the phase transition point.Additionally,the origin of the second component comes from the excited states,which is different from the Laughlin state.
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.
文摘[Objective] This study was conducted to provide certain theoretical reference for the comprehensive evaluation and breeding of new fresh waxy corn vari- eties. [Method] With 5 good fresh waxy corn varieties as experimental materials, correlation analysis and principal component anatysis were performed on 13 agronomic traits, i.e., plant height, ear position, ear weight, ear diameter, axis diameter, ear length, bald tip length, ear row number, number of grains per row, 100-kernel weight, fresh ear yield, tassel length, and tassel branch number. [Result] The principal component analysis performed to the 13 agronomic traits showed that the first three principal components, i.e., the fresh ear yield factors, the tassel factors and the bald top factors, had an accumulative contribution rate over 87.2767%, and could basically represent the genetic information represented by the 13 traits. The first principal component is the main index for the selection and evaluation of good corn varieties which should have large ear, large ear diameter but small axis diameter, i.e., longer grains, larger number of grains per ear, higher, 100-grain weight and higher plant height. As to the second principal component, the plants of fresh corn varieties are best to have longer tassel and not too many branches, and under the premise of ensuring enough pollen for the female spike, the varieties with fewer tassel branches shoud be selected as far as possible. From the point of the third principal component, bald tip length affects the marketing quality of fresh corn, and during fariety evaluation and breeding, the bald top length should be control at the Iowest standard. [Conclusion] The fresh ear yield of corn is in close positive correlation with ear weight, 100-grain weight, ear diameter, number of grains per row and ear length, and plant height also affects fresh ear yield.
基金Supported by the Fund of Anhui Provincial Tobacco Monopoly Bureau(AHKJ2008-03)Anhui Provincial University Key Project of Natural Science(KJ2010A114)Undergraduate Student Science and Technology Innovation Fund of Anhui Agricultural University(2010233)~~
文摘[Objective] This study aimed to explore the related mechanisms of the breaking of flue-cured tobacco leaves. [Method] Anti-breaking models of the main veins of flue-cured tobacco leaves were constructed for principal component analysis on the anti-breaking index, leaf traits and cellulose contents. [Result] The results showed that the growth traits had certain relevance with the cellulose contents while the leaf weight assumed a significant negative correlation with the anti-breaking index, indicating that the heavier the leaf weight was, the weaker the anti-breaking capacity of flue-cured tobacco would be; the cross-sectional area of main veins and the cellulose contents had shown a positive correlation with the anti-breaking index, indicating that the thicker the main vein of flue-cured tobacco was, the higher the cellulose contents would be, and the stronger the anti-breaking capacity of flue-cured tobacco leaves would be. [Conclusion] This study provided theoretical basis and reference to improve tobacco production and enhance the quality of flue-cured tobacco.
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.
文摘In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.