The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive st...The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications.展开更多
A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The pre...A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.展开更多
We propose a method which uses functional singular component to establish functional additive models. The proposed methodology reduces the curve regression problem to ordinary(i.e., scalar) additive regression problem...We propose a method which uses functional singular component to establish functional additive models. The proposed methodology reduces the curve regression problem to ordinary(i.e., scalar) additive regression problems of the singular components of the predictor process and response process. Consistency of estimators for the nonparametric function and prediction are proved, respectively. A simulation study is conducted to investigate the finite sample performances of the proposed estimators.展开更多
基金supported by the EU H2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Project-DEEP,Grant number:101109045)National Key R&D Program of China with Grant number 2018YFB1800804+2 种基金the National Natural Science Foundation of China(Nos.NSFC 61925105,and 62171257)Tsinghua University-China Mobile Communications Group Co.,Ltd,Joint Institutethe Fundamental Research Funds for the Central Universities,China(No.FRF-NP-20-03)。
文摘The increasing dependence on data highlights the need for a detailed understanding of its behavior,encompassing the challenges involved in processing and evaluating it.However,current research lacks a comprehensive structure for measuring the worth of data elements,hindering effective navigation of the changing digital environment.This paper aims to fill this research gap by introducing the innovative concept of“data components.”It proposes a graphtheoretic representation model that presents a clear mathematical definition and demonstrates the superiority of data components over traditional processing methods.Additionally,the paper introduces an information measurement model that provides a way to calculate the information entropy of data components and establish their increased informational value.The paper also assesses the value of information,suggesting a pricing mechanism based on its significance.In conclusion,this paper establishes a robust framework for understanding and quantifying the value of implicit information in data,laying the groundwork for future research and practical applications.
基金National Natural Science Foundation of China (No. 51174202)Doctoral Fund of Ministry of Education of China (No. 20100095110013)
文摘A model that rapidly predicts the density components of raw coal is described.It is based on a threegrade fast float/sink test.The recent comprehensive monthly floating and sinking data are used for comparison.The predicted data are used to draw washability curves and to provide a rapid evaluation of the effect from heavy medium induced separation.Thirty-one production shifts worth of fast float/sink data and the corresponding quick ash data are used to verify the model.The results show a small error with an arithmetic average of 0.53 and an absolute average error of 1.50.This indicates that this model has high precision.The theoretical yield from the washability curves is 76.47% for the monthly comprehensive data and 81.31% using the model data.This is for a desired cleaned coal ash of 9%.The relative error between these two is 6.33%,which is small and indicates that the predicted data can be used to rapidly evaluate the separation effect of gravity separation equipment.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171331, 11561006, 11331011)Program for Creative Research Group of National Natural Science Foundation of China (Grant No. 61621003)+4 种基金a Grant from the Key Lab of Random Complex Structure and Data Science, Chinese Academy of Sciencesthe Natural Science Foundation of Shenzhen UniversityResearch Projects of Colleges and Universities in Guangxi (Grant No. KY2015YB171)Innovation Project of Guangxi Graduate Education (Grant No. JGY2015122)a Grant from the Key Base of Humanities and Social Sciences in Guangxi College
文摘We propose a method which uses functional singular component to establish functional additive models. The proposed methodology reduces the curve regression problem to ordinary(i.e., scalar) additive regression problems of the singular components of the predictor process and response process. Consistency of estimators for the nonparametric function and prediction are proved, respectively. A simulation study is conducted to investigate the finite sample performances of the proposed estimators.