In 2024,China’s natural gas industry continues to show a positive trend.In the field of exploration and development,a large ultra-deep water and ultra-shallow gas field has been discovered,further enhancing the uniqu...In 2024,China’s natural gas industry continues to show a positive trend.In the field of exploration and development,a large ultra-deep water and ultra-shallow gas field has been discovered,further enhancing the unique deep-water complex oil and gas exploration and development technology system independently developed by China.Remarkable achievements have been made in offshore development,including the commissioning of Deep Sea No.1 PhaseⅡ,the first deep-water high-pressure gas field.Additionally,the establishment of the Daji gas field,the first onshore coal rock gas field with an oil and gas equivalent of one million tons,provides strong support for domestic natural gas production.In terms of infrastructure construction,the entire China-Russia east-route natural gas pipeline has been completed,the Xinjiang section of the West Fourth Line is now operational,the Southern Xinjiang Gas Pipeline project has been fully launched,and five new or expanded LNG receiving terminals have been added,increasing the annual receiving capacity by 21.10 million tons.In the field of related equipment manufacturing,China successfully delivered the first vessel of its largest LNG transportation ship construction project,the Greenergy Ocean,and successfully launched its first large-scale floating natural gas liquefaction facility,the NGUYA FLNG.In terms of market supply and demand,natural gas consumption exceeded 400 billion m^(3) for the first time,with apparent consumption reaching 412.43 billion m^(3),an increase of 24.9 billion m^(3) year-on-year,reflecting a growth rate of 6.4%.The total supply reached 424.3 billion m^(3),an increase of 27.5 billion m^(3) year-on-year,with a growth rate of 7.5%.In terms of regulatory policy,China has once again issued a natural gas utilization policy aimed at further guiding the orderly and efficient development of the natural gas market.展开更多
The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy vis...The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.展开更多
We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and str...We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square displacement are calculated for two walks on the Barrat-Barthelemy-Vespignani (BBV) networks. It is found that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.展开更多
In recent years,the concept of“precision microbiome”has received a lot of attention from researchers.It involves the precise analysis and typing of microbiota in specific hosts(e.g.,humans or animals)using advanced ...In recent years,the concept of“precision microbiome”has received a lot of attention from researchers.It involves the precise analysis and typing of microbiota in specific hosts(e.g.,humans or animals)using advanced tools like high-throughput sequencing,genomics,and artificial intelligence(AI).These tools help explore the complex interactions between microbiota and hosts to provide more precise and personalized treatment strategies[1,2].With the maturation of omics technologies and data analysis techniques,the essential role of gut microbiota in immune system maturation,barrier function maintenance,and metabolic regulation has become increasingly recognized[3].However,the“hodgepodge”approach of traditional fecal microbiota transplantation(FMT)cannot be appropriately controlled in clinical applications.This challenge has spurred the emergence of targeted interventions focused on specific functional core probiotics.Unlike traditional FMT,this approach aims to precisely identify and target microbial functional genes and metabolic pathways,selecting core probiotics for application,to improve host health and prevent or manage diseases[4].This article reviews the advantages and limitations of traditional FMT and core probiotic targeted therapy while exploring the future directions of precision microbiome research.展开更多
Recent advancements in high-energy terahertz(THz)sources,driven by powerful laser systems,now enable the generation of ultrashort THz pulses with energies up to several millijoules,spanning frequencies from 1 to 30 TH...Recent advancements in high-energy terahertz(THz)sources,driven by powerful laser systems,now enable the generation of ultrashort THz pulses with energies up to several millijoules,spanning frequencies from 1 to 30 THz.A key breakthrough is developing a reliable single-shot detection method,essential for measuring the electric field of these broadband,low-repetition-rate pulses,which is vital for exploring the complex dynamics of THz emission and studying extreme nonlinear material responses in this range.Existing detection methods have been limited to lower frequencies.Here,we introduce the first potentially single-shot-capable THz detection technique for capturing ultra-broadband waveforms.Utilizing a 1-μm-thick SiN detection chip,we exploit THz field-induced second harmonic generation to achieve real-time monitoring of THz waveforms with frequency content up to 30 THz.By adjusting the angle between the THz and optical probe beams,we can fine-tune the detection window for enhanced flexibility.Our novel THz detector is ideally suited for high-energy,low-repetition-rate sources,unlocking new frontiers in THz research.展开更多
文摘In 2024,China’s natural gas industry continues to show a positive trend.In the field of exploration and development,a large ultra-deep water and ultra-shallow gas field has been discovered,further enhancing the unique deep-water complex oil and gas exploration and development technology system independently developed by China.Remarkable achievements have been made in offshore development,including the commissioning of Deep Sea No.1 PhaseⅡ,the first deep-water high-pressure gas field.Additionally,the establishment of the Daji gas field,the first onshore coal rock gas field with an oil and gas equivalent of one million tons,provides strong support for domestic natural gas production.In terms of infrastructure construction,the entire China-Russia east-route natural gas pipeline has been completed,the Xinjiang section of the West Fourth Line is now operational,the Southern Xinjiang Gas Pipeline project has been fully launched,and five new or expanded LNG receiving terminals have been added,increasing the annual receiving capacity by 21.10 million tons.In the field of related equipment manufacturing,China successfully delivered the first vessel of its largest LNG transportation ship construction project,the Greenergy Ocean,and successfully launched its first large-scale floating natural gas liquefaction facility,the NGUYA FLNG.In terms of market supply and demand,natural gas consumption exceeded 400 billion m^(3) for the first time,with apparent consumption reaching 412.43 billion m^(3),an increase of 24.9 billion m^(3) year-on-year,reflecting a growth rate of 6.4%.The total supply reached 424.3 billion m^(3),an increase of 27.5 billion m^(3) year-on-year,with a growth rate of 7.5%.In terms of regulatory policy,China has once again issued a natural gas utilization policy aimed at further guiding the orderly and efficient development of the natural gas market.
文摘The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.
文摘We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square displacement are calculated for two walks on the Barrat-Barthelemy-Vespignani (BBV) networks. It is found that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.
基金supported by the National Natural Science Foundation of China(grant 82300345)National High-Level Hospital Clinical Research Funding(2023-GSP-QN-23,China)。
文摘In recent years,the concept of“precision microbiome”has received a lot of attention from researchers.It involves the precise analysis and typing of microbiota in specific hosts(e.g.,humans or animals)using advanced tools like high-throughput sequencing,genomics,and artificial intelligence(AI).These tools help explore the complex interactions between microbiota and hosts to provide more precise and personalized treatment strategies[1,2].With the maturation of omics technologies and data analysis techniques,the essential role of gut microbiota in immune system maturation,barrier function maintenance,and metabolic regulation has become increasingly recognized[3].However,the“hodgepodge”approach of traditional fecal microbiota transplantation(FMT)cannot be appropriately controlled in clinical applications.This challenge has spurred the emergence of targeted interventions focused on specific functional core probiotics.Unlike traditional FMT,this approach aims to precisely identify and target microbial functional genes and metabolic pathways,selecting core probiotics for application,to improve host health and prevent or manage diseases[4].This article reviews the advantages and limitations of traditional FMT and core probiotic targeted therapy while exploring the future directions of precision microbiome research.
基金supported by the Independent Research Fund Denmark(project THz-GRIP:2035-00365B).
文摘Recent advancements in high-energy terahertz(THz)sources,driven by powerful laser systems,now enable the generation of ultrashort THz pulses with energies up to several millijoules,spanning frequencies from 1 to 30 THz.A key breakthrough is developing a reliable single-shot detection method,essential for measuring the electric field of these broadband,low-repetition-rate pulses,which is vital for exploring the complex dynamics of THz emission and studying extreme nonlinear material responses in this range.Existing detection methods have been limited to lower frequencies.Here,we introduce the first potentially single-shot-capable THz detection technique for capturing ultra-broadband waveforms.Utilizing a 1-μm-thick SiN detection chip,we exploit THz field-induced second harmonic generation to achieve real-time monitoring of THz waveforms with frequency content up to 30 THz.By adjusting the angle between the THz and optical probe beams,we can fine-tune the detection window for enhanced flexibility.Our novel THz detector is ideally suited for high-energy,low-repetition-rate sources,unlocking new frontiers in THz research.