在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only lo...在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only look once version 8-RFL)模型的输电线路绝缘子缺陷检测方法。首先,通过对原有主干网络C2f(CSPDarknet53 to 2-Stage FPN)模块进行改进,增强模型对于绝缘子缺陷的特征提取能力;其次,构建基于特征聚焦的泛化特征金字塔网络(focusing generalized feature pyramid networks,FGFPN),采用“特征聚焦-扩散”的思想,精细化小缺陷目标的特征表达;然后,设计基于交叉注意机制的特征语义融合模块(feature semantic fusion module,FSFM),优化了对关键特征信息的捕获和利用;最后,提出轻量化权重共享检测头(Lightweight weight sharing detection head,LWSD),在保证检测精度的同时提高模型的计算效率和实时性。实验表明,改进后的YOLOv8-RFL模型均值平均精度(mean average precision,mAP)达到了93.2%,相较于基准模型提升了5.9%,在降低模型参数量和所需计算量的同时,实现了更好的绝缘子小目标缺陷检测效果,对于复杂背景下的输电线路绝缘子缺陷检测具有一定的现实意义。展开更多
文摘在电力巡检过程中,无人机等边端智能检测设备往往面临输电线路绝缘子缺陷目标小、背景因素复杂等难点,且边端设备的硬件条件限制了模型的规模,导致设备算力有限,模型准确率偏低。针对上述问题,该文提出了一种基于YOLOv8-RFL(You only look once version 8-RFL)模型的输电线路绝缘子缺陷检测方法。首先,通过对原有主干网络C2f(CSPDarknet53 to 2-Stage FPN)模块进行改进,增强模型对于绝缘子缺陷的特征提取能力;其次,构建基于特征聚焦的泛化特征金字塔网络(focusing generalized feature pyramid networks,FGFPN),采用“特征聚焦-扩散”的思想,精细化小缺陷目标的特征表达;然后,设计基于交叉注意机制的特征语义融合模块(feature semantic fusion module,FSFM),优化了对关键特征信息的捕获和利用;最后,提出轻量化权重共享检测头(Lightweight weight sharing detection head,LWSD),在保证检测精度的同时提高模型的计算效率和实时性。实验表明,改进后的YOLOv8-RFL模型均值平均精度(mean average precision,mAP)达到了93.2%,相较于基准模型提升了5.9%,在降低模型参数量和所需计算量的同时,实现了更好的绝缘子小目标缺陷检测效果,对于复杂背景下的输电线路绝缘子缺陷检测具有一定的现实意义。