The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A confo...The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.展开更多
By using the complex variable method and conformal mapping, the diffraction of flexural waves and dynamic stress concentrations in thick plates with a cavity have been studied. A general solution of the stress problem...By using the complex variable method and conformal mapping, the diffraction of flexural waves and dynamic stress concentrations in thick plates with a cavity have been studied. A general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of an arbitrary cavity is obtained. By employing the orthogonal function expansion technique, the dynamic stress problem can be reduced to the solution of an infinite algebraic equation series. As an example, the numerical results for the dynamic stress concentration factor in thick plates with a circular, elliptic cavity are graphically presented. The numerical results are discussed.展开更多
In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied....In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.展开更多
文摘The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors(SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole(a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.
文摘By using the complex variable method and conformal mapping, the diffraction of flexural waves and dynamic stress concentrations in thick plates with a cavity have been studied. A general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of an arbitrary cavity is obtained. By employing the orthogonal function expansion technique, the dynamic stress problem can be reduced to the solution of an infinite algebraic equation series. As an example, the numerical results for the dynamic stress concentration factor in thick plates with a circular, elliptic cavity are graphically presented. The numerical results are discussed.
文摘In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.
基金The National Natural Science Foundation of China(11362018,11261045)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20116401110002)the Natural Science Foundation of Ningxia University(ZR15026).