Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of...Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.展开更多
Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems....Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.展开更多
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become...The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.展开更多
In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs a...In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.展开更多
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar...A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that...A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.展开更多
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key...This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.展开更多
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff...The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.展开更多
To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algori...To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it ...In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.展开更多
In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular mu...In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.展开更多
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s...We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.展开更多
Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geo...Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.展开更多
Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows...Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed.The mesh layout and the detailed rescaling procedure are also introduced.Direct numerical simulations(DNSs)for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity(D3Q19)multiple-relaxation-time(MRT)lattice Boltzmann method(LBM)to validate the accuracy,adaptability,and computational performance of the present rescaling algorithm.The results,which are consistent with the previous DNS studies based on the finite difference method and the LBM,demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries.The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency.展开更多
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA01Z263)the National Natural Science Foundation of China (No60496311)
文摘Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.
基金This work was supported by an EPSRC grant (No.EP/C520696/1).
文摘Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties. The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems. This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are also considered.
基金supported by Sub-project of Key National Science and Technology Special Project of China(Grant No.2011ZX05056)
文摘The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
基金financially supported by the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(Grant No.19X100040072)the Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education(Grant No.MIES-2020-07)。
文摘In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.
文摘A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
文摘A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.
文摘This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.
文摘The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.
基金the National Science Foundation of China (No.50525721, 50595411)the National Basic Research Program of China(No.G2004CB217902)
文摘To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
文摘In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.
文摘In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.
基金Supported by the National Natural Science Foundation of China(11471102,61301229)Supported by the Natural Science Foundation of Henan University of Science and Technology(2014QN039)
文摘We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.
基金funded by the National Key Research and Development Program of China(No.2017YFC1501204)the National Natural Science Foundation of China(Nos.51678536,41404096)+2 种基金the Scientific and Technological Research Program of Henan Province(No.171100310100)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001).
文摘Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.
基金Project supported by the National Natural Science Foundation of China(Nos.12172207 and 92052201)。
文摘Understanding and modeling flows over porous layers are of great industrial significance.To accurately solve the turbulent multi-scale flows on complex configurations,a rescaling algorithm designed for turbulent flows with the Chapman-Enskog analysis is proposed.The mesh layout and the detailed rescaling procedure are also introduced.Direct numerical simulations(DNSs)for a turbulent channel flow and a porous walled turbulent channel flow are performed with the three-dimensional nineteen-velocity(D3Q19)multiple-relaxation-time(MRT)lattice Boltzmann method(LBM)to validate the accuracy,adaptability,and computational performance of the present rescaling algorithm.The results,which are consistent with the previous DNS studies based on the finite difference method and the LBM,demonstrate that the present method can maintain the continuity of the macro values across the grid interface and is able to adapt to complex geometries.The reasonable time consumption of the rescaling procedure shows that the present method can accurately calculate various turbulent flows with multi-scale and complex configurations while maintaining high computational efficiency.