期刊文献+
共找到1,799篇文章
< 1 2 90 >
每页显示 20 50 100
Hierarchical Modeling by Recursive Unsupervised Spectral Clustering and Network Extended Importance Measures to Analyze the Reliability Characteristics of Complex Network Systems 被引量:1
1
作者 Yiping Fang Enrico Zio 《American Journal of Operations Research》 2013年第1期101-112,共12页
The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchic... The complexity of large-scale network systems made of a large number of nonlinearly interconnected components is a restrictive facet for their modeling and analysis. In this paper, we propose a framework of hierarchical modeling of a complex network system, based on a recursive unsupervised spectral clustering method. The hierarchical model serves the purpose of facilitating the management of complexity in the analysis of real-world critical infrastructures. We exemplify this by referring to the reliability analysis of the 380 kV Italian Power Transmission Network (IPTN). In this work of analysis, the classical component Importance Measures (IMs) of reliability theory have been extended to render them compatible and applicable to a complex distributed network system. By utilizing these extended IMs, the reliability properties of the IPTN system can be evaluated in the framework of the hierarchical system model, with the aim of providing risk managers with information on the risk/safety significance of system structures and components. 展开更多
关键词 complex network system Hierarchical Modeling Spectral Clustering EXTENDED IMPORTANCE Measure
在线阅读 下载PDF
Trends in alpha diversity,community composition,and network complexity of rare,intermediate,and abundant bacterial taxa along a latitudinal gradient and their impact on ecosystem multifunctionality
2
作者 Rong Tang Shuaifeng Li +3 位作者 Xiaobo Huang Rui Zhang Cong Li Jianrong Su 《Forest Ecosystems》 2025年第4期642-654,共13页
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ... Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient. 展开更多
关键词 BACTERIA Ecosystem multifunctionality Alpha diversity Community composition network complexity Latitudinal gradient
在线阅读 下载PDF
Dynamics of air transport networks:A review from a complex systems perspective 被引量:11
3
作者 Luis E.C.Rocha 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期469-478,共10页
Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the ev... Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies,passengers and the environment.In this review,we briefly present and discuss the state-of-the-art on time-evolving air transport networks.We distinguish the structural analysis of sequences of network snapshots,ideal for long-term network evolution(e.g.annual evolution),and temporal paths,preferred for short-term dynamics(e.g.hourly evolution).We emphasize that most previous research focused on the first modeling approach(i.e.long-term) whereas only a few studies look at high-resolution temporal paths.We conclude the review highlighting that much research remains to be done,both to apply already available methods and to develop new measures for temporal paths on air transport networks.In particular,we identify that the study of delays,network resilience and optimization of resources(aircraft and crew) are critical topics. 展开更多
关键词 Air transport Airport network complex network Dynamic network Temporal network
原文传递
Complex systems and network science:a survey 被引量:10
4
作者 YANG Kewei LI Jichao +5 位作者 LIU Maidi LEI Tianyang XU Xueming WU Hongqian CAO Jiaping QI Gaoxin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期543-573,共31页
Complex systems widely exist in nature and human society.There are complex interactions between system elements in a complex system,and systems show complex features at the macro level,such as emergence,self-organizat... Complex systems widely exist in nature and human society.There are complex interactions between system elements in a complex system,and systems show complex features at the macro level,such as emergence,self-organization,uncertainty,and dynamics.These complex features make it difficult to understand the internal operation mechanism of complex systems.Networked modeling of complex systems is a favorable means of understanding complex systems.It not only represents complex interactions but also reflects essential attributes of complex systems.This paper summarizes the research progress of complex systems modeling and analysis from the perspective of network science,including networked modeling,vital node analysis,network invulnerability analysis,network disintegration analysis,resilience analysis,complex network link prediction,and the attacker-defender game in complex networks.In addition,this paper presents some points of view on the trend and focus of future research on network analysis of complex systems. 展开更多
关键词 complex system complex network invulnerability and resilience network disintegration link prediction attackerdefender game theory
在线阅读 下载PDF
Circulation system complex networks and teleconnections 被引量:4
5
作者 龚志强 王晓娟 +1 位作者 支蓉 冯爱霞 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期495-503,共9页
In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitative... In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90°N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific-North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30°S-90°S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks. 展开更多
关键词 complex network structural feature circulation system node degree
原文传递
Earthquake disaster chain model based on complex networks for urban engineering systems 被引量:3
6
作者 Lu Zheng Yan Deyu Jiang Huanjun 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期230-237,共8页
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d... According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters. 展开更多
关键词 EARTHQUAKE disaster chain seismic resilience secondary disaster complex network VULNERABILITY risk level
在线阅读 下载PDF
Dependency-based importance measures of components in mechatronic systems with complex network theory 被引量:1
7
作者 Yin Yong Wang Shuxin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期137-144,共8页
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t... To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components. 展开更多
关键词 importance measure mechatronic system DEPENDENCY complex network theory
在线阅读 下载PDF
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
8
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
Modified Fixed-Time Synchronization Criteria of Complex Networks with Time-Varying Delays via Continuous or Discontinuous Control
9
作者 WU Huan WU Ailong ZHANG Jin'e 《Wuhan University Journal of Natural Sciences》 2025年第2期150-158,共9页
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ... This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies. 展开更多
关键词 complex networks settling time fixed-time synchronization controllers time-varying delays
原文传递
Degree-Preserving Distance Compression and Topological Compressibility of Complex Networks
10
作者 Jian-Hui Li Zu-Guo Yu Yu-Chu Tian 《Chinese Physics Letters》 2025年第12期24-32,共9页
Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly ... Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly optimized topologies.But the key problems arise:how to compress a network to best enhance its compactness,and what the compression limit of the network reflects?We abstract the topological compression of complex networks as a dynamic process of making them more compact and propose the local compression modulus that plays a key role in effective compression evolution of networks.Subsequently,we identify topological compressibility-a general property of complex networks that characterizes the extent to which a network can be compressed-and provide its approximate quantification.We anticipate that our findings and established theory will provide valuable insights into both dynamics and various applications of complex networks. 展开更多
关键词 local compr topological compression node interactionswhich network topologyreal accurately modeling real network dynamics compact highly optimized topologiesbut complex networks network dynamics
原文传递
Characteristics of complex network of heatwaves over China
11
作者 Xuemin Shen Xiaodong Hu +2 位作者 Aixia Feng Qiguang Wang Changgui Gu 《Chinese Physics B》 2025年第3期567-577,共11页
Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in differen... Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns. 展开更多
关键词 complex network HEATWAVE spatiotemporal evolution characteristics
原文传递
Cluster synchronization of master-slave complex networks via adaptive feedback pinning control
12
作者 LIU Ziping GONG Siyi 《上海师范大学学报(自然科学版中英文)》 2025年第4期389-400,共12页
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m... This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach. 展开更多
关键词 cluster synchronization TIME-VARYING master-slave complex networks DELAYED adaptive feedback control pinning control
在线阅读 下载PDF
K-GCN for Identifying Key Nodes in Complex Networks
13
作者 Lin DONG Yufeng LU 《Journal of Mathematical Research with Applications》 2025年第2期260-274,共15页
Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ... Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods. 展开更多
关键词 key nodes complex networks K-SHELL GCN
原文传递
GPIC:A GPU-based parallel independent cascade algorithm in complex networks
14
作者 Chang Su Xu Na +1 位作者 Fang Zhou Linyuan Lü 《Chinese Physics B》 2025年第3期20-30,共11页
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ... Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research. 展开更多
关键词 complex networks information spreading independent cascade model parallel computing GPU
原文传递
Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
15
作者 Xiongding Liu Xiaodan Zhao +1 位作者 Xiaojing Zhong Wu Wei 《Chinese Physics B》 2025年第6期262-274,共13页
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d... This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19. 展开更多
关键词 epidemic spreading SEIQR model stability and sensitivity analysis heterogeneous complex networks optimal control
原文传递
Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
16
作者 Cheng-Jun Xie Xiang-Qing Lu 《Chinese Physics B》 2025年第4期354-363,共10页
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s... This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results. 展开更多
关键词 finite time synchronization time-varying intermittent control duplex heterogeneous networks complex networks
原文传递
Decoupling of diversity and network complexity of bacterial communities during water quality deterioration
17
作者 Qiuyue Feng Yuyan Liu +6 位作者 Kaiming Hu Guanghui Wang Zhiquan Liu Yu Han Wenbing Li Hangjun Zhang Binhao Wang 《Journal of Environmental Sciences》 2025年第9期86-95,共10页
Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the... Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management. 展开更多
关键词 Water quality degradation Bacterial communities network complexity Driving factors
原文传递
The Complex System Modeling Method Based on Uniform Design and Neural Network 被引量:1
18
作者 Zhang Yong(Beijing Simulation Center, P.O.Box 142-23, Beijing 100854, P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期27-36,共10页
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model... In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively. 展开更多
关键词 Modeling method Uniform design Neural network complex system Simulation.
在线阅读 下载PDF
Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control 被引量:1
19
作者 刘丹峰 吴召艳 叶青伶 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期183-190,共8页
In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be i... In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results. 展开更多
关键词 structure identification network complex-variable chaotic system impulsive control
原文传递
Complex network perspective on modelling chaotic systems via machine learning
20
作者 Tong-Feng Weng Xin-Xin Cao Hui-Jie Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期211-215,共5页
Recent advances have demonstrated that a machine learning technique known as "reservoir computing" is a significantly effective method for modelling chaotic systems. Going beyond short-term prediction, we sh... Recent advances have demonstrated that a machine learning technique known as "reservoir computing" is a significantly effective method for modelling chaotic systems. Going beyond short-term prediction, we show that long-term behaviors of an observed chaotic system are also preserved in the trained reservoir system by virtue of network measurements. Specifically, we find that a broad range of network statistics induced from the trained reservoir system is nearly identical with that of a learned chaotic system of interest. Moreover, we show that network measurements of the trained reservoir system are sensitive to distinct dynamics and can in turn detect the dynamical transitions in complex systems. Our findings further support that rather than dynamical equations, reservoir computing approach in fact provides an alternative way for modelling chaotic systems. 展开更多
关键词 reservoir computing approach complex networks chaotic systems
原文传递
上一页 1 2 90 下一页 到第
使用帮助 返回顶部