In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe...In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.展开更多
In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. There...In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.展开更多
Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variab...Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.展开更多
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr...In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.展开更多
A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Un...A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.展开更多
In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps....In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.展开更多
Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calcu...Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indicate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble functions in solving stability problems of plates and plate structures.展开更多
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natu...A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.展开更多
The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex opt...The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.展开更多
This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the fea...This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.展开更多
基金Supported by the Natural Science Foundation of Hubei Province(2008CDZD47)
文摘In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)
文摘In this paper, the basic formulae for the semi-analytical graded FEM on FGM members are derived. Since FGM parameters vary along three space coordinates, the parameters can be integrated in mechanical equations. Therefore with the parameters of a given FGM plate, problems of FGM plate under various conditions can be solved. The approach uses 1D discretization to obtain 3D solutions, which is proven to be an effective numerical method for the mechanical analyses of FGM structures. Examples of FGM plates with complex shapes and various holes are presented.
文摘Fracture of Kirchhoff plates is analyzed by the theory of complex variables and boundary collocation method. The deflections, moments and shearing forces of the plates are assumed to be the functions of complex variables. The functions can satisfy a series of basic equations and governing conditions, such as the equilibrium equations in the domain, the boundary conditions on the crack surfaces and stress singularity at the crack tips. Thus, it is only necessary to consider the boundary conditions on the external boundaries of the plate, which can be approximately satisfied by the collocation method and least square technique. Different boundary conditions and loading cases of the cracked plates are analyzed and calculated. Compared to other methods, the numerical examples show that the present method has many advantages such as good accuracy and less computer time. This is an effective semi_analytical and semi_numerical method.
基金Supported by the Natural Science Foundation of Hubei Province (2008CDZD47)
文摘In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Pujiang Program (Grant No.06PJ14039)
文摘A polynomial interior-point algorithm is presented for monotone linear complementarity problem (MLCP) based on a class of kernel functions with the general barrier term, which are called general kernel functions. Under the mild conditions for the barrier term, the complexity bound of algorithm in terms of such kernel function and its derivatives is obtained. The approach is actually an extension of the existing work which only used the specific kernel functions for the MLCP.
文摘In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the currently best known bound for infeasible interior-point methods.
基金the Natural Science Foundation of Jiangxi Province of Chinathe Basic Theory Research Foundation of Nanchang University
文摘Bubble functions are finite element modes that are zero on the boundary of the element but nonzero at the other point. The present paper adds bubble functions to the ordinary Complex Finite Strip Method(CFSM) to calculate the elastic local buckling stress of plates and plate assemblies. The results indicate that the use of bubble functions greatly improves the convergence of the Finite Strip Method(FSM) in terms of strip subdivision, and leads to much smaller storage required for the structure stiffness and stability matrices. Numerical examples are given, including plates and plate structures subjected to a combination of longitudinal and transverse compression, bending and shear. This study illustrates the power of bubble functions in solving stability problems of plates and plate structures.
基金supported by the National Natural Science Foundation of China(Nos.10932001,11072015, and 10761005)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.
基金supported by the National Natural Science Foundation of China (Grant No.10771133)the Shanghai Leading Academic Discipline Project (Grant No.S30101)the Research Foundation for the Doctoral Program of Higher Education (Grant No.200802800010)
文摘The choice of self-concordant functions is the key to efficient algorithms for linear and quadratic convex optimizations, which provide a method with polynomial-time iterations to solve linear and quadratic convex optimization problems. The parameters of a self-concordant barrier function can be used to compute the complexity bound of the proposed algorithm. In this paper, it is proved that the finite barrier function is a local self-concordant barrier function. By deriving the local values of parameters of this barrier function, the desired complexity bound of an interior-point algorithm based on this local self-concordant function for linear optimization problem is obtained. The bound matches the best known bound for small-update methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11461021)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM1014)Scientific Research Project of Hezhou University(Grant Nos.2014YBZK06 and 2016HZXYSX03)
文摘This paper proposes a new full Nesterov-Todd(NT) step infeasible interior-point algorithm for semidefinite programming. Our algorithm uses a specific kernel function, which is adopted by Liu and Sun, to deduce the feasibility step. By using the step, it is remarkable that in each iteration of the algorithm it needs only one full-NT step, and can obtain an iterate approximate to the central path. Moreover, it is proved that the iterative bound corresponds with the known optimal one for semidefinite optimization problems.