In this paper, a multicarrier DS-CDMA system which employs Z-Complementary Se- quences (ZCS) as spreading code is investigated. The new system can not only eliminate multipath interference and Multiple Access Interfer...In this paper, a multicarrier DS-CDMA system which employs Z-Complementary Se- quences (ZCS) as spreading code is investigated. The new system can not only eliminate multipath interference and Multiple Access Interference (MAI), but also support flexible number of users com- pared with system using Orthogonal Complementary (OC) codes. Multicarrier DS-CDMA using OC codes can be regarded as a special case of our proposed system. Zero Correlation Zone (ZCZ) of ZCS can be flexibly adjusted to meet the requirements on the user number and maximum multipath and in- ter-user delay, in this way, more users can be supported without losing interference-free property. The effectiveness of the proposed system is validated through theoretical analysis and simulation results.展开更多
This article proposes a time/frequency synchronization algorithm in the multiple input multiple output (MIMO) systems, in which the perfect complete generalized complementary orthogonal loosely synchronous code grou...This article proposes a time/frequency synchronization algorithm in the multiple input multiple output (MIMO) systems, in which the perfect complete generalized complementary orthogonal loosely synchronous code groups are used as the synchronization sequence. The synchronization algorithm is divided into four stages: 1) synchronization in time domain by signal autocorrelation; 2) synchronization in frequency domain by fast Fourier transform (FFT); 3) multipath dissociation using coherent detection and fine time synchronization; 4) fine frequency offset estimation by phase rotation. As per the perfect complete generalized complementary orthogonal loosely synchronous code groups, the cross-correlation and out-of-phase auto-correlation for any relative shift between any two codes is always zero. This ideal property makes the time/frequency synchronization algorithm simple and efficient. The simulation results show that even in the multipath fast fading channel with low signal noise ratio (SNR), the MIMO system can get synchronized both in the time domain and frequency domain with high stability and reliability.展开更多
基金Supported by the National Natural Science Foundation of China (No.60772087, No.90604035)111 Project (No.111- 2-14)
文摘In this paper, a multicarrier DS-CDMA system which employs Z-Complementary Se- quences (ZCS) as spreading code is investigated. The new system can not only eliminate multipath interference and Multiple Access Interference (MAI), but also support flexible number of users com- pared with system using Orthogonal Complementary (OC) codes. Multicarrier DS-CDMA using OC codes can be regarded as a special case of our proposed system. Zero Correlation Zone (ZCZ) of ZCS can be flexibly adjusted to meet the requirements on the user number and maximum multipath and in- ter-user delay, in this way, more users can be supported without losing interference-free property. The effectiveness of the proposed system is validated through theoretical analysis and simulation results.
基金supported by the National Natural Science Foundation of China(90604035)
文摘This article proposes a time/frequency synchronization algorithm in the multiple input multiple output (MIMO) systems, in which the perfect complete generalized complementary orthogonal loosely synchronous code groups are used as the synchronization sequence. The synchronization algorithm is divided into four stages: 1) synchronization in time domain by signal autocorrelation; 2) synchronization in frequency domain by fast Fourier transform (FFT); 3) multipath dissociation using coherent detection and fine time synchronization; 4) fine frequency offset estimation by phase rotation. As per the perfect complete generalized complementary orthogonal loosely synchronous code groups, the cross-correlation and out-of-phase auto-correlation for any relative shift between any two codes is always zero. This ideal property makes the time/frequency synchronization algorithm simple and efficient. The simulation results show that even in the multipath fast fading channel with low signal noise ratio (SNR), the MIMO system can get synchronized both in the time domain and frequency domain with high stability and reliability.