期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Complementary system-theoretic modelling approach for enhancing hydrological forecasting
1
作者 Martins Y.Otache 李致家 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期273-280,共8页
Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is propose... Hydrologic models generally represent the most dominant processes since they are mere simplifications of physical reality and thus are subject to many significant uncertainties. As such, a coupling strategy is proposed. To this end, the coupling of the artificial neural network (ANN) with the Xin'anjiang conceptual model with a view to enhance the quality of its flow forecast is presented. The approach uses the latest observations and residuals in runoff/discharge forecasts from the Xin'anjiang model. The two complementary models (Xin'anjiang & ANN) are used in such a way that residuals of the Xin'anjiang model are forecasted by a neural network model so that flow forecasts can be improved as new observations come in. For the complementary neural network, the input data were presented in a patterned format to conform to the calibration regime of the Xin'anjiang conceptual model, using differing variants of the neural network scheme. The results show that there is a substantial improvement in the accuracy of the forecasts when the complementary model was operated on top of the Xin'anjiang conceptual model as compared with the results of the Xin'anjiang model alone. 展开更多
关键词 hydrological forecasting complementary model RESIDUAL Xin'anjiang conceptual model artificial neural network
在线阅读 下载PDF
Moving object detection method based on complementary multi resolution background models 被引量:2
2
作者 屠礼芬 仲思东 彭祺 《Journal of Central South University》 SCIE EI CAS 2014年第6期2306-2314,共9页
A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models ... A novel moving object detection method was proposed in order to adapt the difficulties caused by intermittent object motion,thermal and dynamic background sequences.Two groups of complementary Gaussian mixture models were used.The ghost and real static object could be classified by comparing the similarity of the edge images further.In each group,the multi resolution Gaussian mixture models were used and dual thresholds were applied in every resolution in order to get a complete object mask without much noise.The computational color model was also used to depress illustration variations and light shadows.The proposed method was verified by the public test sequences provided by the IEEE Change Detection Workshop and compared with three state-of-the-art methods.Experimental results demonstrate that the proposed method is better than others for all of the evaluation parameters in intermittent object motion sequences.Four and two in the seven evaluation parameters are better than the others in thermal and dynamic background sequences,respectively.The proposed method shows a relatively good performance,especially for the intermittent object motion sequences. 展开更多
关键词 moving object detection complementary Gaussian mixture models intermittent object motion thermal and dynamic background
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部