In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,en...In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.展开更多
Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonitebased buffer,backfill,and sealing systems in deep geological dispos...Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonitebased buffer,backfill,and sealing systems in deep geological disposal of high-level radioactive wastes.Motivated by such applications,most past experimental studies were focused on highly compacted and high-quality bentonite.Such degrees of dry densities may not be economically or technically feasible for other emerging applications,including as an alternative material to cement in plugging and abandonment of wells.A bespoke high-pressure high-temperature constant rate of strain(CRS)apparatus was developed for the work reported here to conduct a series of tests for evaluating the hydro-mechanical response of compacted bentonite to elevated temperatures.Experiments were performed with bentonite specimens with high impurity contents at a range of dry densities(1.1,1.4,and 1.7 Mg/m^(3))and temperatures between 20 and 80℃.The results show that temperature increase leads to the decrease of swelling pressure for all studied densities.Larger reductions of swelling pressure were observed with increasing dry densities,suggesting the possibility of a larger exchange of pore water in the microstructure system of the clay.The transfer of water from micropores to macropores at elevated temperatures is shown to be a key controlling process at high-density compacted bentonite by which temperature affects the swelling pressure and hydraulic conductivity.展开更多
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste...Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.展开更多
Predicting the gas breakthrough pressure of saturated compacted bentonite is crucial for ensuring the long-term safe operation of deep geological repositories for the disposal of high-level radioactive nuclear wastes....Predicting the gas breakthrough pressure of saturated compacted bentonite is crucial for ensuring the long-term safe operation of deep geological repositories for the disposal of high-level radioactive nuclear wastes.In this work,the swelling pressure,water injection,gas injection and mercury intrusion porosimetry(MIP)tests on saturated compacted Gaomiaozi(GMZ)bentonite specimens with a dry density of 1.3 Mg/m^(3),1.4 Mg/m^(3),1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3) were conducted.Subsequently,the relationships between the swelling pressure and average inter-particle distance,as well as between the gas entry pressure and the maximum effective pore size were analyzed and established.Considering that gas migration and breakthrough are all closely related to the pore structures of the tested geomaterials,a novel gas breakthrough pressure prediction model based on the pore size distribution(PSD)curve was constructed using an existing prediction model based on gas entry pressure and swelling pressure.Finally,based on the test results of the specimens 1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3),gas breakthrough pressures of the specimens with dry densities of 1.3 Mg/m^(3) and 1.4 Mg/m^(3) were predicted.The results show that the calculated gas breakthrough pressures of 0.76 MPa and 1.28 MPa are very close to the measured values of 0.80 MPa and 1.30 MPa,validating the accuracy of the proposed model.展开更多
Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydrau...Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydraulic fracturing.This study conducted injection tests on compacted GMZ(Gaomiaozi)bentonite with a self-developed visualization set-up.The objective was to unveil the roles of dry density,water content,and pressurization rate in hydraulic fracturing from the perspective of fracturing macromorphological dynamics and breakthrough characteristics.Moreover,the relationships between breakthrough characteristics and microstructure were examined by MIP(mercury intrusion porosimetry)analysis.Results showed that the fracturing dynamics were characterized by three stages:hydration,cracking,and fracturing stages.Compared to water content and pressurization rate,dry density exerted more pronounced effects on these stages.Increasing dry density can lead to an expansion of circular hydration zone,a more complex cracking network,and a change in fracturing patterns from long and clear to short and fuzzy.In terms of breakthrough characteristics,the breakthrough pressure was positively correlated with dry density and negatively correlated with water content.Interestingly,there is a good and unique logarithmic correlation between the breakthrough pressure and the ratio eM/em of inter-aggregate void ratio and intra-aggregate void ratio,regardless of dry density and water content.Within a certain range(i.e.200-50 kPa/min),breakthrough pressure showed slight dependency on pressurization rate.Nevertheless,an extremely low pressurization rate of 20 kPa/min caused a transition for the specimen from quasi-brittle to plastic state owning to more water infiltration,thereby hindering fracture initiation and propagation.展开更多
The performance of roller compacted concrete(RCC)was greatly influenced by variations in material proportion,optimum moisture content,density of mixes and methodology adopted making it different from conventional conc...The performance of roller compacted concrete(RCC)was greatly influenced by variations in material proportion,optimum moisture content,density of mixes and methodology adopted making it different from conventional concrete mixes.Even though RCC has gained popularity,the complex phenomenon involved in developing the RCC mixes limits it from large-scale applications.In this study,reclaimed asphalt pavement(RAP)incorporated roller-compacted geopolymer concrete(RGC)mixes were developed herein with different compaction techniques such as vibratory hammer(VH),modified proctor(MP),vibration table(VT)and compression machine(CM)are studied and compared with control mixes of natural aggregates.Initially,the effect of alkali solutions such as sodium hydroxide(SH)and sodium silicate(SS)on the physical properties.During,the second phase mechanical properties such as dry density,compressive,flexural and split-tensile strength,modulus of elasticity and microstructure properties will be investigated.The test results revealed that compaction efforts were greatly influenced by the alkali solution.Furthermore,the poor bond characteristics between RAP and the binder matrix had a significant effect on strength properties.Also,the various compaction techniques affected the mechanical properties of mixes developed herein.In Comparison with various compaction efforts,VH and MP produced comparable results,whereas the VT method underestimated and overestimated the various strength properties.Although,the CM method reports comparable results but difficult to maintain consistency in strength aspects.Therefore,optimization of various parameters influencing the concrete properties needs to be achieved for field density.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat...The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.展开更多
The strength and thermal conductivity of compacted graphite iron(CGI)are crucial performance indicators in its engineering application.The presence of graphite in CGI significantly influences the two properties.In the...The strength and thermal conductivity of compacted graphite iron(CGI)are crucial performance indicators in its engineering application.The presence of graphite in CGI significantly influences the two properties.In the previous studies,graphite in CGI was often described using two-dimensional(2D)morphology.In this study,the three-dimensional(3D)size,shape,and distribution of graphite in CGI were analyzed using X-ray tomography.Based on this,a new method is introduced to calculate the 3D vermicularity and compare it with the 2D vermicularity in terms of tensile properties and thermal conductivity.The results demonstrate that vermicular graphite exhibits greater connectivity in 3D observation compared to 2D observation.Therefore,the calculation method of 3D vermicularity is determined by considering the surface area and volume of the connected graphite.Then a linear relationship between 3 and 2D vermicularity has been observed.By comparing the correlation coefficient,it has been found that the 3D vermicularity offers a more accurate method to establish the relationship among graphite morphology,thermal conductivity and tensile property of CGI.展开更多
The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assemb...The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.展开更多
Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are u...Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies.展开更多
Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements af...Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.展开更多
Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated s...Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated sites.This study aimed to investigate the gas diffusion barrier performance of compacted clayey soils amended with three agents including attapulgite and diatomite individually,and attapulgite/diatomite mixture.The properties including water retention,volumetric shrinkage,gas diffusion,and unconfined compressive strength were evaluated through a series of laboratory tests of amended compacted clayey soils.The results demonstrate that the decrease in volume proportions of interaggregate pores leads to an increase in unconfined compressive strength(qu).Both hydrophilic groups and microstructures of attapulgite and diatomite result in an increase in water retention percent(Wt)of compacted clayey soil specimens after amendment regardless of the type of agent or initial water content(w0).Furthermore,the ratio of the gas diffusion coefficient(De)to the gas diffusion coefficient in the air(Da)was significantly reduced owing to a decrease in volume proportions of inter-aggregate pores,hydrophilic group,and microstructures of attapulgite and diatomite.Scanning electron microscope analyses revealed that rod-shaped attapulgite filled the inter-aggregate pores formed by clay particles,whereas the disc-shaped diatomite particles,characterized by micropores,failed to obstruct the interaggregate pores due to their larger particle size.Mercury intrusion porosimetry(MIP)analyses showed a reduction in pore volume in the inter-aggregate pores,leading to a reduction in the total pore volume for both the attapulgite and attapulgite/diatomite mixture amended clays,which is in accordance with the scanning electron microscope(SEM)results.The findings are pertinent to the practical application of compacted clay liners as gas barriers against the upward migration of volatile or semi-volatile organic contaminants at contaminated sites.展开更多
In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydr...In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydration,it develops more evidently under chemical conditions.To investigate the anisotropic swelling of compacted Gaomiaozi(GMZ)bentonite and the further response to saline effects,a series of constant-volume swelling pressure tests were performed.Results showed that dry density enhanced the bentonite swelling and raised the final anisotropy,whereas saline inhibited the bentonite swelling but still promoted the final anisotropy.The final anisotropy coefficient(ratio of radial to axial pressure)obeyed the Boltzmann sigmoid attenuation function,decreasing with concentration and dry density,converging to a minimum value of 0.76.The staged evolution of anisotropy coefficient was discovered,that saline inhibited the rise of the anisotropy coefficient(Dd)in the isotropic process greater than the valley(d1)in the anisotropic process,leading to the final anisotropy increasing.The isotropic stage amplified the impact of soil structure rearrangement on the macro-swelling pressure values.Thus,a new method for predicting swelling pressures of compacted bentonite was proposed,by expanding the equations of Gouy-Chapman theory with a dissipative wedge term.An evolutionary function was constructed,revealing the correlation between the occurrence time and the pressure value due to the structure rearrangement and the former crystalline swelling.Accordingly,a design reference for dry density was given,based on the chemical conditions around the pre-site in Beishan,China.The anisotropy promoted by saline would cause a greater drop of radial pressure,making the previous threshold on axial swelling fail.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
A greenhouse experiment was conducted involving complete/intact 100 cm cores of a fragipan soil. The cores were maintained in moist conditions throughout the experiment as annual ryegrass (Lolium multiflorum) or festu...A greenhouse experiment was conducted involving complete/intact 100 cm cores of a fragipan soil. The cores were maintained in moist conditions throughout the experiment as annual ryegrass (Lolium multiflorum) or festulolium (Lolium spp and Fescue spp hybrid) were grown with and without additional surface applied amendments, including NaF, NaNO3, NaCl, and KCl. The results suggest a significant effect of annual ryegrass and festulolium on fragipan horizon degradation after 24 months. Annual ryegrass and festulolium were found to effectively change the structure of the fragipan horizon when planted on the soil surface and roots grew through the upper soil profile and penetrated into the fragipan. The fragipan structural change (degradation) appeared to increase with each planting sequence, particularly with soybean crop rotations. Sodium nitrate added to the soil surface with the growth of annual ryegrass resulted in a significant synergistic effect for degrading the fragipan horizon. The other amendments were not as effective in causing additional fragipan degradation.展开更多
In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water con...In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.展开更多
Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t...Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.展开更多
The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary pat...The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.展开更多
This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simu...This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simulation.Recent studies on the thermal conductivity of various cast irons are reviewed through the influence of alloying elements,structural constituents,and temperature.The addition of alloying elements is the main reason that restricts the thermal conductivity of cast irons,especially spheroidal graphite cast iron.The connectivity of graphite has a significant effect on the thermal conductivity of flake and compacted graphite cast irons,semiquantitative and quantitative analysis of this factor is a key and difficult point in the study of thermal conductivity of cast irons.The thermal conductivities of different types of cast irons show varying degrees of dependence on temperature.This phenomenon is the combination of graphite and matrix,rather than just depending on graphite morphology.The study of the relationship between individual phase and temperature is the focus of future research.These summaries and discussions may provide reference and guidance for the future research and development of high thermal conductivity cast irons.展开更多
基金the China Postdoctoral Science Foundation(Grant No.2024MD753992)Shaanxi Geotechnical Mechanics and Engineering Young Talent Support Program Project(Grant No.YESS2024005)the National Natural Science Foundation of China(Grant No.41931285).
文摘In this study,compacted loess samples with varying compaction water content but identical dry density were prepared to investigate the evolution of their hydraulic conductivity and compression behavior.Additionally,environmental scanning electron microscopy(ESEM)and nuclear magnetic resonance(NMR)analyses were conducted to gain microstructural insights into loess behavior at the laboratory scale.The results indicate that the maximum saturated hydraulic conductivity is observed at the lowest compaction water content,particularly in the early stage of permeability tests.In particular,for loess compacted at water contents below the optimum(as determined by the modified Proctor compaction test),the hydraulic conductivity decreases throughout the permeability tests.Conversely,when the water content exceeds the optimum level,the hydraulic conductivity shows an increasing trend.In terms of compression behavior,when the as-compacted samples are loaded in oedometer conditions,an increase in material compressibility is observed with increasing compaction water content.Again,a different phenomenological behavior was observed when the compaction water content exceeded the optimum,i.e.an abrupt increase in loess compressibility.ESEM tests provide microstructural confirmation of this evidence,as the surface morphology of the compacted loess changes significantly with increasing compaction water content.The microstructural evolution was also quantified in terms of area ratio using image processing software.Finally,NMR was used to quantify the intra-and inter-aggregate water at different compaction water contents,once again highlighting a threshold for the presence or absence of inter-aggregate water similar to the optimum water content.
基金University of Manchester and the China Scholarship Council,Royal Society,UK,Grant/Award Number:IECNSFC211366National Natural Science Foundation of China,Grant/Award Numbers:5247415,52174133Natural Science Foundation of Jiangsu Province of China,Grant/Award Number:BK20240107。
文摘Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonitebased buffer,backfill,and sealing systems in deep geological disposal of high-level radioactive wastes.Motivated by such applications,most past experimental studies were focused on highly compacted and high-quality bentonite.Such degrees of dry densities may not be economically or technically feasible for other emerging applications,including as an alternative material to cement in plugging and abandonment of wells.A bespoke high-pressure high-temperature constant rate of strain(CRS)apparatus was developed for the work reported here to conduct a series of tests for evaluating the hydro-mechanical response of compacted bentonite to elevated temperatures.Experiments were performed with bentonite specimens with high impurity contents at a range of dry densities(1.1,1.4,and 1.7 Mg/m^(3))and temperatures between 20 and 80℃.The results show that temperature increase leads to the decrease of swelling pressure for all studied densities.Larger reductions of swelling pressure were observed with increasing dry densities,suggesting the possibility of a larger exchange of pore water in the microstructure system of the clay.The transfer of water from micropores to macropores at elevated temperatures is shown to be a key controlling process at high-density compacted bentonite by which temperature affects the swelling pressure and hydraulic conductivity.
基金the support of the National Natural Science Foundation of China(Grant Nos.42030714,42177138 and 41907239).
文摘Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.
基金the National Natural Science Foundationof China (Grant No. 42030714).
文摘Predicting the gas breakthrough pressure of saturated compacted bentonite is crucial for ensuring the long-term safe operation of deep geological repositories for the disposal of high-level radioactive nuclear wastes.In this work,the swelling pressure,water injection,gas injection and mercury intrusion porosimetry(MIP)tests on saturated compacted Gaomiaozi(GMZ)bentonite specimens with a dry density of 1.3 Mg/m^(3),1.4 Mg/m^(3),1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3) were conducted.Subsequently,the relationships between the swelling pressure and average inter-particle distance,as well as between the gas entry pressure and the maximum effective pore size were analyzed and established.Considering that gas migration and breakthrough are all closely related to the pore structures of the tested geomaterials,a novel gas breakthrough pressure prediction model based on the pore size distribution(PSD)curve was constructed using an existing prediction model based on gas entry pressure and swelling pressure.Finally,based on the test results of the specimens 1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3),gas breakthrough pressures of the specimens with dry densities of 1.3 Mg/m^(3) and 1.4 Mg/m^(3) were predicted.The results show that the calculated gas breakthrough pressures of 0.76 MPa and 1.28 MPa are very close to the measured values of 0.80 MPa and 1.30 MPa,validating the accuracy of the proposed model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42430713 and 42125701)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)。
文摘Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydraulic fracturing.This study conducted injection tests on compacted GMZ(Gaomiaozi)bentonite with a self-developed visualization set-up.The objective was to unveil the roles of dry density,water content,and pressurization rate in hydraulic fracturing from the perspective of fracturing macromorphological dynamics and breakthrough characteristics.Moreover,the relationships between breakthrough characteristics and microstructure were examined by MIP(mercury intrusion porosimetry)analysis.Results showed that the fracturing dynamics were characterized by three stages:hydration,cracking,and fracturing stages.Compared to water content and pressurization rate,dry density exerted more pronounced effects on these stages.Increasing dry density can lead to an expansion of circular hydration zone,a more complex cracking network,and a change in fracturing patterns from long and clear to short and fuzzy.In terms of breakthrough characteristics,the breakthrough pressure was positively correlated with dry density and negatively correlated with water content.Interestingly,there is a good and unique logarithmic correlation between the breakthrough pressure and the ratio eM/em of inter-aggregate void ratio and intra-aggregate void ratio,regardless of dry density and water content.Within a certain range(i.e.200-50 kPa/min),breakthrough pressure showed slight dependency on pressurization rate.Nevertheless,an extremely low pressurization rate of 20 kPa/min caused a transition for the specimen from quasi-brittle to plastic state owning to more water infiltration,thereby hindering fracture initiation and propagation.
文摘The performance of roller compacted concrete(RCC)was greatly influenced by variations in material proportion,optimum moisture content,density of mixes and methodology adopted making it different from conventional concrete mixes.Even though RCC has gained popularity,the complex phenomenon involved in developing the RCC mixes limits it from large-scale applications.In this study,reclaimed asphalt pavement(RAP)incorporated roller-compacted geopolymer concrete(RGC)mixes were developed herein with different compaction techniques such as vibratory hammer(VH),modified proctor(MP),vibration table(VT)and compression machine(CM)are studied and compared with control mixes of natural aggregates.Initially,the effect of alkali solutions such as sodium hydroxide(SH)and sodium silicate(SS)on the physical properties.During,the second phase mechanical properties such as dry density,compressive,flexural and split-tensile strength,modulus of elasticity and microstructure properties will be investigated.The test results revealed that compaction efforts were greatly influenced by the alkali solution.Furthermore,the poor bond characteristics between RAP and the binder matrix had a significant effect on strength properties.Also,the various compaction techniques affected the mechanical properties of mixes developed herein.In Comparison with various compaction efforts,VH and MP produced comparable results,whereas the VT method underestimated and overestimated the various strength properties.Although,the CM method reports comparable results but difficult to maintain consistency in strength aspects.Therefore,optimization of various parameters influencing the concrete properties needs to be achieved for field density.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金supported by the Science and Technology Innovation Development Project of Yantai(No.2023ZDX016)。
文摘The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant.Nos.51871224 and 52130002the Guangdong Basic and Applied Basic Research Foundation(2021A1515010890).
文摘The strength and thermal conductivity of compacted graphite iron(CGI)are crucial performance indicators in its engineering application.The presence of graphite in CGI significantly influences the two properties.In the previous studies,graphite in CGI was often described using two-dimensional(2D)morphology.In this study,the three-dimensional(3D)size,shape,and distribution of graphite in CGI were analyzed using X-ray tomography.Based on this,a new method is introduced to calculate the 3D vermicularity and compare it with the 2D vermicularity in terms of tensile properties and thermal conductivity.The results demonstrate that vermicular graphite exhibits greater connectivity in 3D observation compared to 2D observation.Therefore,the calculation method of 3D vermicularity is determined by considering the surface area and volume of the connected graphite.Then a linear relationship between 3 and 2D vermicularity has been observed.By comparing the correlation coefficient,it has been found that the 3D vermicularity offers a more accurate method to establish the relationship among graphite morphology,thermal conductivity and tensile property of CGI.
基金supported by the National Natural Science Foundation of China (Grant Nos.42125701 and 41977232)China Postdoctoral Science Foundation (Grant No.2021M702234).
文摘The requisite functions of a bentonite buffer in a deep geological repository depend on the sealing/healing of bentonite interfaces,with particular emphasis on the self-healing(automatic healing upon wetting)of assembled bentonite-bentonite interfaces.This study determined the shear resistance(including the peak shear strength and secant modulus)of densely compacted Gaomiaozi(GMZ)bentonite and its assembled interface after confined water saturation.The effect of bentonite dry density and saturation time on the shear resistance of saturated healed interfaces was elucidated,and the interfacial self-healing capacity was assessed.The results indicate that the shear resistance of the saturated healed interfaces increased with the bentonite dry density but had a non-monotonic correlation with the saturation time.For a given dry density of the bentonite,the saturated healed interface exhibits a lower peak shear strength than the saturated intact bentonite but a higher peak shear strength than the saturated separated interface.The saturated healed and separated interfaces have comparable shear moduli(secant moduli),which are lower than that of the saturated intact bentonite.The saturated healed interfaces display smooth shear failure planes,while the saturated assembled interfaces and intact bentonite exhibit comparable frictional angles.This indicates that interfacial self-healing plays a pivotal role in enhancing interfacial peak shear strength by facilitating microstructural bonding at the assembled interface.Finally,it can be stated that densely compacted GMZ bentonite has a robust interfacial self-healing capacity in terms of shear resistance.These findings contribute to the design of the bentonite buffer and facilitate the evaluation of its safe operation at specified disposal ages.
文摘Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies.
基金the financial support of the State Key Laboratory of Engine Reliability(skler-202105)。
文摘Thermal analysis plays a key role in the online inspection of molten iron quality.Different solidification process of molten iron can be reflected by thermal analysis curves,and silicon is one of important elements affecting the solidification of molten iron.In this study,FeSi75 was added in one chamber of the dual-chamber sample cup,and the influences of FeSi75 additive on the characteristic values of thermal analysis curves and vermiculating rate were investigated.The results show that with the increase of FeSi75,the start temperature of austenite formation TALfirstly decreases and then increases,but the start temperature of eutectic growth TSEF,the lowest eutectic temperature TEU,temperature at maximum eutectic reaction rate TEM,and highest eutectic temperature TERkeep always an increase.The temperature at final solidification point TEShas little change.The FeSi75 additive has different influences on the vermiculating rate of molten iron with different vermiculation,and the vermiculating rate increases for lower vermiculation molten iron while decreases for higher one.According to the thermal analysis curves obtained by a dual-chamber sample cup with 0.30wt.%FeSi75 additive in one chamber,the vermiculating rate of molten iron can be evaluated by comparing the characteristic values of these curves.The time differenceΔtERcorresponding to the highest eutectic temperature TERhas a closer relationship with the vermiculating rate,and a parabolic regression curve between the time differenceΔtERand vermiculating rateηhas been obtained within the range of 65%to 95%,which is suitable for the qualified melt.
基金the funding support from the National Natural Science Foundation of China(Grant No.42177133)the Primary Research and Development Plan of Jiangsu Province(Grant No.BE2022830)the Primary Research and Development Plan of Anhui Province(Grant No.2023t07020018).
文摘Compacted clay liners are extensively used as barriers to control the upward diffusion of vapors of volatile or semi-volatile organic contaminants released from unsaturated contaminated soils at industrycontaminated sites.This study aimed to investigate the gas diffusion barrier performance of compacted clayey soils amended with three agents including attapulgite and diatomite individually,and attapulgite/diatomite mixture.The properties including water retention,volumetric shrinkage,gas diffusion,and unconfined compressive strength were evaluated through a series of laboratory tests of amended compacted clayey soils.The results demonstrate that the decrease in volume proportions of interaggregate pores leads to an increase in unconfined compressive strength(qu).Both hydrophilic groups and microstructures of attapulgite and diatomite result in an increase in water retention percent(Wt)of compacted clayey soil specimens after amendment regardless of the type of agent or initial water content(w0).Furthermore,the ratio of the gas diffusion coefficient(De)to the gas diffusion coefficient in the air(Da)was significantly reduced owing to a decrease in volume proportions of inter-aggregate pores,hydrophilic group,and microstructures of attapulgite and diatomite.Scanning electron microscope analyses revealed that rod-shaped attapulgite filled the inter-aggregate pores formed by clay particles,whereas the disc-shaped diatomite particles,characterized by micropores,failed to obstruct the interaggregate pores due to their larger particle size.Mercury intrusion porosimetry(MIP)analyses showed a reduction in pore volume in the inter-aggregate pores,leading to a reduction in the total pore volume for both the attapulgite and attapulgite/diatomite mixture amended clays,which is in accordance with the scanning electron microscope(SEM)results.The findings are pertinent to the practical application of compacted clay liners as gas barriers against the upward migration of volatile or semi-volatile organic contaminants at contaminated sites.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42125701)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)the Fundamental Research Funds for the Central Universities,and Top Discipline Plan of Shanghai Universities-Class I.
文摘In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydration,it develops more evidently under chemical conditions.To investigate the anisotropic swelling of compacted Gaomiaozi(GMZ)bentonite and the further response to saline effects,a series of constant-volume swelling pressure tests were performed.Results showed that dry density enhanced the bentonite swelling and raised the final anisotropy,whereas saline inhibited the bentonite swelling but still promoted the final anisotropy.The final anisotropy coefficient(ratio of radial to axial pressure)obeyed the Boltzmann sigmoid attenuation function,decreasing with concentration and dry density,converging to a minimum value of 0.76.The staged evolution of anisotropy coefficient was discovered,that saline inhibited the rise of the anisotropy coefficient(Dd)in the isotropic process greater than the valley(d1)in the anisotropic process,leading to the final anisotropy increasing.The isotropic stage amplified the impact of soil structure rearrangement on the macro-swelling pressure values.Thus,a new method for predicting swelling pressures of compacted bentonite was proposed,by expanding the equations of Gouy-Chapman theory with a dissipative wedge term.An evolutionary function was constructed,revealing the correlation between the occurrence time and the pressure value due to the structure rearrangement and the former crystalline swelling.Accordingly,a design reference for dry density was given,based on the chemical conditions around the pre-site in Beishan,China.The anisotropy promoted by saline would cause a greater drop of radial pressure,making the previous threshold on axial swelling fail.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
文摘A greenhouse experiment was conducted involving complete/intact 100 cm cores of a fragipan soil. The cores were maintained in moist conditions throughout the experiment as annual ryegrass (Lolium multiflorum) or festulolium (Lolium spp and Fescue spp hybrid) were grown with and without additional surface applied amendments, including NaF, NaNO3, NaCl, and KCl. The results suggest a significant effect of annual ryegrass and festulolium on fragipan horizon degradation after 24 months. Annual ryegrass and festulolium were found to effectively change the structure of the fragipan horizon when planted on the soil surface and roots grew through the upper soil profile and penetrated into the fragipan. The fragipan structural change (degradation) appeared to increase with each planting sequence, particularly with soybean crop rotations. Sodium nitrate added to the soil surface with the growth of annual ryegrass resulted in a significant synergistic effect for degrading the fragipan horizon. The other amendments were not as effective in causing additional fragipan degradation.
基金The Natural Science Foundation of Jiangsu Province(No. BK2011618)
文摘In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.
基金the Chinese Scholarship Council,which funded her Joint Ph D research programthe support from Natural Sciences and Engineering Research Council of Canada(NSERC)for his research programsthe Chinese Ministry of Science and Technology for supporting his research program(grant No.2014CB744701)
文摘Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.
文摘The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.
基金financial support by the National Natural Science Foundationof China(Grant No.51371104)。
文摘This paper gives a brief introduction to the four research methods for the study on thermal conductivity of cast irons,including experimental measurement,statistical analysis,effective medium theory and numerical simulation.Recent studies on the thermal conductivity of various cast irons are reviewed through the influence of alloying elements,structural constituents,and temperature.The addition of alloying elements is the main reason that restricts the thermal conductivity of cast irons,especially spheroidal graphite cast iron.The connectivity of graphite has a significant effect on the thermal conductivity of flake and compacted graphite cast irons,semiquantitative and quantitative analysis of this factor is a key and difficult point in the study of thermal conductivity of cast irons.The thermal conductivities of different types of cast irons show varying degrees of dependence on temperature.This phenomenon is the combination of graphite and matrix,rather than just depending on graphite morphology.The study of the relationship between individual phase and temperature is the focus of future research.These summaries and discussions may provide reference and guidance for the future research and development of high thermal conductivity cast irons.