期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Modified Genetic Algorithm for Combined Heat and Power Economic Dispatch
1
作者 Deliang Li Chunyu Yang 《Journal of Bionic Engineering》 CSCD 2024年第5期2569-2586,共18页
Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genet... Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genetic Algorithm(MGA)to determine the power and heat outputs of three kinds of units for CHPED.First,MGA replaces the simulated binary crossover by a new one based on the uniform and guassian distributions,and its convergence can be enhanced.Second,MGA modi-fies the mutation operator by introducing a disturbance coefficient based on guassian distribution,which can decrease the risk of being trapped into local optima.Eight instances with or without prohibited operating zones are used to investigate the efficiencies of MGA and other four genetic algorithms for CHPED.In comparison with the other algorithms,MGA has reduced generation costs by at least 562.73$,1068.7$,522.68$and 1016.24$,respectively,for instances 3,4,7 and 8,and it has reduced generation costs by at most 848.22$,3642.85$,897.63$and 3812.65$,respectively,for instances 3,4,7 and 8.Therefore,MGA has desirable convergence and stability for CHPED in comparison with the other four genetic algorithms. 展开更多
关键词 Modified genetic algorithm combined heat and power economic dispatch Uniform distribution Guassian distribution Disturbance coefficient Prohibited operating zone
在线阅读 下载PDF
A Hybrid Multi-Objective Evolutionary Algorithm for Optimal Groundwater Management under Variable Density Conditions 被引量:4
2
作者 YANG Yun WU Jianfeng +2 位作者 SUN Xiaomin LIN Jin WU Jichun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第1期246-255,共10页
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under va... In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources. 展开更多
关键词 seawater intrusion multi-objective optimization niched Pareto tabu search combined with genetic algorithm niched Pareto tabu search genetic algorithm
在线阅读 下载PDF
Application of Interval Algorithm in Rural Power Network Planning
3
作者 GU Zhuomu ZHAO Yulin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第3期57-60,共4页
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r... Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality. 展开更多
关键词 rural power network optimization planning load uncertainty interval algorithm genetic/tabu search combination algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部