Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g...Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.展开更多
Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory o...Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),...The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.展开更多
Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the n...Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation,...To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.展开更多
Upper-lower computer mode is the main architecture design of the amphibious combat simulation system(ACSS)at present.Through continuous improvement of real-time performance,software and hardware infrastructure,the exp...Upper-lower computer mode is the main architecture design of the amphibious combat simulation system(ACSS)at present.Through continuous improvement of real-time performance,software and hardware infrastructure,the exponential growth of operational network data scale is realized,but the availability performance of ACSS declines.The reliability of the working host as the key node has become the bottleneck of the overall availability of network nodes in the ACSS.To optimize the network node architecture of ACSS,this paper presents an effective optimization solution by designing the dual redundancy warm-standby module of the mission computer and I/O port,the algorithm of selecting output path of the mission computer in network nodes,the decision-making algorithm upon the on-duty host and output,and the video output decision-making algorithm upon the upper host.Lastly,the complete process of operational data from the input to output and the opposite is implemented well to guarantee the overall availability of network nodes in the ACSS.It has great advantages of wide applicability,strong reliability and high real-time switching speed.展开更多
Multi-robot cooperation problem has received increasing attention in the research community and has been extensively studied from different aspects. Space constrain problem is a major issue for building a multi-robot ...Multi-robot cooperation problem has received increasing attention in the research community and has been extensively studied from different aspects. Space constrain problem is a major issue for building a multi-robot system. This con- strain is a major hindrance for the efficient cooperation among robots in multi-robot applications. In this paper, we demonstrate a novel architecture of a multi-robot system without space restriction. Our architecture is based on the Internet of Things technology. We validated the proposed architecture using a case study considering a multi-robot combat application.展开更多
Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventio...Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.展开更多
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes...Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.展开更多
The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in th...The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.展开更多
During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art n...During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art not only helps define its cultural essence but also carries important implications for its long-term development.It is an objective fact that combat represents the practical manifestation of traditional Wushu in history.Combat reflects similarities among traditional Wushu forms that emerged throughout history.Combat reflects the historical law governing the evolution of traditional Wushu and represents an abstraction of repetitive phenomena in traditional Wushu.A correct understanding of this objectivity,these similarities,and this repeatability is conducive to promoting and carrying forward traditional Wushu,thereby facilitating an objective analysis of differences among different traditional Wushu forms and the discovery of their evolution paradigm.In the contemporary context,it is essential for traditional Wushu to emphasize its distinctive cultural roots,thereby facilitating creative transformation and innovative development.展开更多
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its ...Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its failure to consider the intention and event of the target,resulting in inaccurate assessment results.In view of this,an integrated threat assessment method is proposed to address the existing problems,such as overly subjective determination of index weight and imbalance of situation.The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention,event,situation,and capability.On this basis,a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively.Then,variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective.The performance of the model and algorithm is evaluated through multiple simulation experiments.The assessment results demonstrate the accuracy of the proposed method in BVR air combat,indicating its potential practical significance in real air combat scenarios.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susce...The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.展开更多
Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel ...Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel John Boyd’s theory of OODA loop that deals with information superiority. Building a robust, mobile and capable network that could provide for novel appliances and information superiority is the main challenge which modernizers are facing. Network, suitable for future combat operations, and able to transport a vast amount of information on a battlefield, is expensive to build. Every mistake in design and the need to correct those mistakes could halt development in an army for years. Therefore, system dependability analysis during system design phase is needed. In this report, the concept of a future Battle Network System is described. The Report evaluates operational environment of BNS and possible failure reasons of the service, and illustrates the change in BNS Quality of Service due to probable transport layer errors. This paper describes the method of testing the concept of proposed network systems on the drawing board, and emphasizes design points for a new system. Nevertheless, the proposed method is by no means conclusive. Rather, it describes an engineering approach to define the main problems while creating MANET-based networking systems.展开更多
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr...To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.展开更多
基金supported by the National Natural Science Foundation of China(61273198)
文摘Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology.
基金supported by Science Foundation of Dalian Naval Academy
文摘Naval Vessels Combat System is a kind of complex system.The modeling of combat system has become hot issues in the past years.This paper proposed a new method to establish models of combat system based on the theory of Complex Network.The method of modeling considered the operational entities as nodes.It considered flow of information,substance and energy as edges in a network.The research also carries on a simulation to prove the applicability.Ultimately,the paper concluded that this method is applicable and accurate.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
基金supported by the National Natural Science Foundation of China(7200120972231011+2 种基金72071206)the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province(2020RC4046)the Science Foundation for Outstanding Youth Scholars of Hunan Province(2022JJ20047).
文摘The rapid development of military technology has prompted different types of equipment to break the limits of operational domains and emerged through complex interactions to form a vast combat system of systems(CSoS),which can be abstracted as a heterogeneous combat network(HCN).It is of great military significance to study the disintegration strategy of combat networks to achieve the breakdown of the enemy’s CSoS.To this end,this paper proposes an integrated framework called HCN disintegration based on double deep Q-learning(HCN-DDQL).Firstly,the enemy’s CSoS is abstracted as an HCN,and an evaluation index based on the capability and attack costs of nodes is proposed.Meanwhile,a mathematical optimization model for HCN disintegration is established.Secondly,the learning environment and double deep Q-network model of HCN-DDQL are established to train the HCN’s disintegration strategy.Then,based on the learned HCN-DDQL model,an algorithm for calculating the HCN’s optimal disintegration strategy under different states is proposed.Finally,a case study is used to demonstrate the reliability and effectiveness of HCNDDQL,and the results demonstrate that HCN-DDQL can disintegrate HCNs more effectively than baseline methods.
基金supported by the National Natural Science Foundation of China(61573017)the Doctoral Innovation Found of Air Force Engineering University(KGD08101604)
文摘Manned combat aerial vehicles (MCAVs), and un-manned combat aerial vehicles (UCAVs) together form a cooper-ative engagement system to carry out operational mission, whichwill be a new air engagement style in the near future. On the basisof analyzing the structure of the MCAV/UCAV cooperative engage-ment system, this paper divides the unique system into three hi-erarchical levels, respectively, i.e., mission level, task-cluster leveland task level. To solve the formation and adjustment problem ofthe latter two levels, three corresponding mathematical modelsare established. To solve these models, three algorithms calledquantum artificial bee colony (QABC) algorithm, greedy strategy(GS) and two-stage greedy strategy (TSGS) are proposed. Finally,a series of simulation experiments are designed to verify the effec-tiveness and superiority of the proposed algorithms.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
文摘To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.
基金Supported by the National Natural Science Foundation of China(61401496)
文摘Upper-lower computer mode is the main architecture design of the amphibious combat simulation system(ACSS)at present.Through continuous improvement of real-time performance,software and hardware infrastructure,the exponential growth of operational network data scale is realized,but the availability performance of ACSS declines.The reliability of the working host as the key node has become the bottleneck of the overall availability of network nodes in the ACSS.To optimize the network node architecture of ACSS,this paper presents an effective optimization solution by designing the dual redundancy warm-standby module of the mission computer and I/O port,the algorithm of selecting output path of the mission computer in network nodes,the decision-making algorithm upon the on-duty host and output,and the video output decision-making algorithm upon the upper host.Lastly,the complete process of operational data from the input to output and the opposite is implemented well to guarantee the overall availability of network nodes in the ACSS.It has great advantages of wide applicability,strong reliability and high real-time switching speed.
文摘Multi-robot cooperation problem has received increasing attention in the research community and has been extensively studied from different aspects. Space constrain problem is a major issue for building a multi-robot system. This con- strain is a major hindrance for the efficient cooperation among robots in multi-robot applications. In this paper, we demonstrate a novel architecture of a multi-robot system without space restriction. Our architecture is based on the Internet of Things technology. We validated the proposed architecture using a case study considering a multi-robot combat application.
基金supported by the National Key R&D Program of China(No.2021YFB3300602)。
文摘Within-Visual-Range(WVR)air combat is a highly dynamic and uncertain domain where effective strategies require intelligent and adaptive decision-making.Traditional approaches,including rule-based methods and conventional Reinforcement Learning(RL)algorithms,often focus on maximizing engagement outcomes through direct combat superiority.However,these methods overlook alternative tactics,such as inducing adversaries to crash,which can achieve decisive victories with lower risk and cost.This study proposes Alpha Crash,a novel distributional-rein forcement-learning-based agent specifically designed to defeat opponents by leveraging crash induction strategies.The approach integrates an improved QR-DQN framework to address uncertainties and adversarial tactics,incorporating advanced pilot experience into its reward functions.Extensive simulations reveal Alpha Crash's robust performance,achieving a 91.2%win rate across diverse scenarios by effectively guiding opponents into critical errors.Visualization and altitude analyses illustrate the agent's three-stage crash induction strategies that exploit adversaries'vulnerabilities.These findings underscore Alpha Crash's potential to enhance autonomous decision-making and strategic innovation in real-world air combat applications.
文摘Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.
基金co-supported by the National Natural Science Foundation of China(No.91852115)。
文摘The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.
文摘During its interaction with modern sports,traditional Wushu has faced increasing doubts about its combat effectiveness,raising concerns about its cultural identity.How traditional Wushu is understood as a combat art not only helps define its cultural essence but also carries important implications for its long-term development.It is an objective fact that combat represents the practical manifestation of traditional Wushu in history.Combat reflects similarities among traditional Wushu forms that emerged throughout history.Combat reflects the historical law governing the evolution of traditional Wushu and represents an abstraction of repetitive phenomena in traditional Wushu.A correct understanding of this objectivity,these similarities,and this repeatability is conducive to promoting and carrying forward traditional Wushu,thereby facilitating an objective analysis of differences among different traditional Wushu forms and the discovery of their evolution paradigm.In the contemporary context,it is essential for traditional Wushu to emphasize its distinctive cultural roots,thereby facilitating creative transformation and innovative development.
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金National Natural Science Foundation of China(62006193,62103338)Aeronautical Science Foundation of China(2022Z023053001)+1 种基金Key Research and Development Program of Shaanxi Province(2024GX-YBXM-115)Fundamental Research Funds for the Central Universities(D5000230150)。
文摘Beyond-visual-range(BVR)air combat threat assessment has attracted wide attention as the support of situation awareness and autonomous decision-making.However,the traditional threat assessment method is flawed in its failure to consider the intention and event of the target,resulting in inaccurate assessment results.In view of this,an integrated threat assessment method is proposed to address the existing problems,such as overly subjective determination of index weight and imbalance of situation.The process and characteristics of BVR air combat are analyzed to establish a threat assessment model in terms of target intention,event,situation,and capability.On this basis,a distributed weight-solving algorithm is proposed to determine index and attribute weight respectively.Then,variable weight and game theory are introduced to effectively deal with the situation imbalance and achieve the combination of subjective and objective.The performance of the model and algorithm is evaluated through multiple simulation experiments.The assessment results demonstrate the accuracy of the proposed method in BVR air combat,indicating its potential practical significance in real air combat scenarios.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘The combat survivability is an essential factor to be considered in the development of recent military aircraft. Radar stealth and onboard electronic attack are two major techniques for the reduction of aircraft susceptibility. A tactical scenario for a strike mission is presented. The effect of aircraft radar cross section on the detection probability of a threat radar, as well as that of onboard jammer, are investigated. The guidance errors of radar guided surface to air missile and anti aircraft artillery, which are disturbed by radar cross section reduction or jammer radiated power and both of them are determined. The probability of aircraft kill given a single shot is calculated and finally the sortie survivability of an attack aircraft in a supposed hostile thread environment worked out. It is demonstrated that the survivability of a combat aircraft will be greatly enhanced by the combined radar stealth and onboard electronic attack, and the evaluation metho dology is effective and applicable.
文摘Modernization of armies is a constant process and is driven by intuitive fact that those who do not modernize will become extinct. In last five decades, the development of modern armies has taken place around Colonel John Boyd’s theory of OODA loop that deals with information superiority. Building a robust, mobile and capable network that could provide for novel appliances and information superiority is the main challenge which modernizers are facing. Network, suitable for future combat operations, and able to transport a vast amount of information on a battlefield, is expensive to build. Every mistake in design and the need to correct those mistakes could halt development in an army for years. Therefore, system dependability analysis during system design phase is needed. In this report, the concept of a future Battle Network System is described. The Report evaluates operational environment of BNS and possible failure reasons of the service, and illustrates the change in BNS Quality of Service due to probable transport layer errors. This paper describes the method of testing the concept of proposed network systems on the drawing board, and emphasizes design points for a new system. Nevertheless, the proposed method is by no means conclusive. Rather, it describes an engineering approach to define the main problems while creating MANET-based networking systems.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method.