The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism,specifically the Green's functions,and physical measurements(the spectral functions)in real...The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism,specifically the Green's functions,and physical measurements(the spectral functions)in real time.Various approaches have been developed to enhance the accuracy of analytic continuation,including the Padéapproximation,the maximum entropy method,and stochastic analytic continuation.In this study,we employ different deep learning techniques to investigate the analytic continuation for the quantum impurity model.A significant challenge in this context is that the sharp Abrikosov-Suhl resonance peak may be either underestimated or overestimated.We fit both the imaginary-time Green's function and the spectral function using Chebyshev polynomials in logarithmic coordinates.We utilize Full-Connected Networks(FCN),Convolutional Neural Networks(CNNs),and Residual Networks(ResNet)to address this issue.Our findings indicate that introducing noise during the training phase significantly improves the accuracy of the learning process.The typical absolute error achieved is less than 10-4.These investigations pave the way for machine learning to optimize the analytic continuation problem in many-body systems,thereby reducing the need for prior expertise in physics.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
Objective:To explore the application effect of a doctor-nurse cooperation follow-up model based on an Internet platform in the continuation of care for patients after uro-oncology surgery.Methods:A convenient sampling...Objective:To explore the application effect of a doctor-nurse cooperation follow-up model based on an Internet platform in the continuation of care for patients after uro-oncology surgery.Methods:A convenient sampling method was used to select patients with urinary system tumors who underwent surgery in the Department of Urology in Grade III A general hospital in Shanghai from May to August 2022.Patients who underwent surgery from May to June 2022 were assigned to the control group,and those who underwent surgery from July to August 2022 were assigned to the experimental group.The control group received routine post-discharge nursing health education and telephone follow-up.On the basis of routine discharge guidance,the experimental group implemented the intervention method based on the Internet platform in continuation care.The levels of self-management efficacy,satisfaction,and incidence of unplanned readmission were compared one month after discharge between the two groups.Results:One month after discharge,the self-management efficacy of the experimental group(90.15±7.92)was significantly higher than that of the control group(79.10±7.84),and the patient satisfaction score(97.83±2.32)was significantly higher than that of the control group(90.23±2.58),with statistical significance(P<0.05).Additionally,the incidence of unplanned readmissions within one month after discharge in the experimental group(1.59%)was slightly lower than that in the control group(4.84%).Conclusion:The doctor-nurse cooperation follow-up model based on the Internet platform in continuation care can significantly improve the self-management efficiency of patients after discharge and enhance patient satisfaction,providing a new approach for discharge follow-up of urological tumor patients after surgery.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban...Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.展开更多
Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monit...Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monitoring of glucose trends,and can place patients at risk for hypo-and hyperglycemia.Continuous glucose monitors(CGMs)have emerged as a mainstay for pediatric diabetic care and are continuing to advance treatment by providing real-time blood glucose(BG)data,with trend analysis aided by machine learning(ML)algorithms.These predictive analytics serve to prevent against dangerous BG variations in the perioperative environment for fasted children undergoing surgical stress.Integration of CGM data into electronic health records(EHR)is essential,as it establishes a foundation for future technologic interfaces with artificial intelligence(AI).Challenges in perioperative CGM implementation include equitable device access,protection of patient privacy and data accuracy,ensuring institution of standardized protocols,and financing the cumbersome healthcare costs associated with staff training and technology platforms.This paper advocates for implementation of CGM data into the EHR utilizing multiple facets of AI/ML algorithms.展开更多
BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the...BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the association between CGM-derived indicators and the risk of DF in individuals with type 2 diabetes mellitus(T2DM).METHODS A total of 591 individuals with T2DM(297 with DF and 294 without DF)were enrolled.Relevant clinical data,complications,comorbidities,hematological parameters,and 72-hour CGM data were collected.Logistic regression analysis was employed to examine the relationship between these measurements and the risk of DF.RESULTS Individuals with DF exhibited higher mean blood glucose(MBG)levels and increased proportions of time above range(TAR),TAR level 1,and TAR level 2,but lower TIR(all P<0.001).Patients with DF had significantly lower rates of achieving target ranges for TIR,TAR,and TAR level 2 than those without DF(all P<0.05).Logistic regression analysis revealed that GRI,MBG,and TAR level 1 were positively associated with DF risk,while TIR was inversely correlated(all P<0.05).Achieving TIR and TAR was inversely correlated with white blood cell count and glycated hemoglobin A1c levels(P<0.05).Additionally,achieving TAR was influenced by fasting plasma glucose,body mass index,diabetes duration,and antidiabetic medication use.CONCLUSION CGM metrics,particularly TIR and GRI,are significantly associated with the risk of DF in T2DM,emphasizing the importance of improved glucose control.展开更多
Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experiment...Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experimental results indicate that increasing soaking time increases the volume fraction of martensite and the size of martensite islands, as well as tensile strength(TS) and yield strength(YS),while decreasing plasticity.As the steel slowly cools to a lower temperature prior to final quenching, TS and YS decrease, whereas elongation increases.The decrease in martensite content is due to the partial decomposition of austenite into ferrite during long slow cooling before quenching.As overaging temperature increases because of the tempering of martensite and aging of ferrite, TS decreases and YS increases.Work hardening analysis shows that in the initial stage of deformation, low overaging temperatures enhance work hardening ability.展开更多
[Objectives]This study was conducted to investigate the mechanism of continuous cropping obstacles in Polygonatum odoratum.[Methods]Three treatments were established:continuous cropping(two consecutive crops),first-cr...[Objectives]This study was conducted to investigate the mechanism of continuous cropping obstacles in Polygonatum odoratum.[Methods]Three treatments were established:continuous cropping(two consecutive crops),first-crop control(with Phaseolus vulgaris as the preceding crop),and blank control.The effects of continuous cropping on the functional diversity of soil microorganisms,soil enzyme activities,and soil nutrient coordination in the rhizosphere soil of P.odoratum during different growth stages were investigated.[Results](1)Continuous cropping increased the carbon source metabolic capacity,Shannon diversity index,and richness of rhizosphere soil microorganisms by 3.2%-14.7%,0.9%-3.5%,and 1.3%-12.5%,respectively,but the differences were not significant.(2)Principal component analysis indicated that during the middle stage of rhizome expansion,continuous cropping significantly altered the characteristics of microbial carbon metabolism,and the microbial communities utilizing carbohydrates,amino acids,polymers,carboxylic acids and amines as carbon sources exhibited vigorous metabolism.(3)Continuous cropping significantly reduced the activities of urease,polyphenol oxidase,and acid phosphatase in rhizosphere soil,with decreases of 24.4%-39.5%,3.2%-14.8%,and 7.9%-18.2%,respectively.The activities of catalase and invertase sometimes exceeded and sometimes fell below those of the first crop,showing no consistent pattern.(4)Under continuous cropping conditions,nutrient imbalance occurred in the rhizosphere soil,characterized by nitrogen deficiency and phosphorus surplus.(5)Grey correlation analysis indicated that available phosphorus content,alkali-hydrolyzable nitrogen content and polyphenol oxidase activity in rhizosphere soil were the main factors influencing microbial functional diversity.[Conclusions]This study provides a theoretical basis for understanding the formation mechanism of continuous cropping obstacles in P.odoratum.展开更多
Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.The...Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.展开更多
Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuo...Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuous light exposure.This study aimed to investigate the morphological and functional alterations in BAT under continuous light conditions and to identify traditional Chinese medicine compounds capable of reversing these changes.Methods:A metabolic disorder model was established by subjecting mice to continuous light exposure for 5 weeks.During this period,body weight,food intake,and body fat percentage were monitored.Serum levels of triglyceride(TG),total cholesterol(TC),high density lipoprotein cholesterol(HDL-C),and low density lipoprotein cholesterol(LDL-C)were measured to assess lipid metabolism.Histological changes in BAT were examined using H&E staining.The expression of the thermogenic marker uncoupling protein 1(UCP1)in BAT was determined by RT-qPCR and Western blot to evaluate thermogenic function.RNA sequencing(RNA-seq)was employed to identify differentially expressed genes(DEGs)involved in BAT whitening induced by prolonged continuous light exposure.DEGs were analyzed using the connectivity map(CMap)database to identify potential preventive and therapeutic compounds.The therapeutic efficacy of the selected compounds was subsequently evaluated using the above indicators,and key pathways were validated through western blot analysis.Results:After 5 weeks of continuous light exposure,mice exhibited increased body fat percentage and serum levels of TG,impaired mitochondrial function,reduced thermogenic capacity,and whitening of BAT.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses indicated that BAT whitening was primarily associated with the adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,fatty acid metabolism,and circadian rhythm.Ten hub genes identified using Cytoscape were mainly related to AMPK signaling and heat shock proteins.In vivo experiments showed that cordycepin significantly attenuated the increase in body fat percentage caused by prolonged light exposure.This effect was mediated by activation of the AMPK/PGC-1α/UCP1 signaling pathway,which restored the multilocular morphology and thermogenic function of BAT.Conclusion:Cordycepin mitigates continuous light-induced BAT whitening and metabolic disturbances by activating the AMPK signaling pathway.展开更多
The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aq...The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.展开更多
During the continuous casting process of low carbon steel,the solidified hook formed in the mold has great effects on the surface quality of the cast slab.Some factory experiments have been conducted to investigate th...During the continuous casting process of low carbon steel,the solidified hook formed in the mold has great effects on the surface quality of the cast slab.Some factory experiments have been conducted to investigate the microscopic characteristics and reveal the influence of process parameters on solidified hooks.The depth of the hooks showed a positive correlation with the deflection angle,length,and oscillation mark(OM)depth,which indicates that the OM depth can serve as an approximate indicator for evaluating the depth of the solidified hooks.On the wide and narrow faces of the cast slab,the depth of the solidified hooks and the temperature distribution in the mold show opposite trends,with lower depths of solidified hooks at positions with higher temperatures.In addition,the influence of process parameters on solidified hooks was analyzed.With the increase in superheat,not only the depth of solidified hooks gradually decreases,but also the ratio of depression-typed marks increases.Increasing casting speed and decreasing immersion depth of the submerged entry nozzle will both lead to a decrease in the depth of the solidified hook.展开更多
Objective:To analyze the value of continuous care for patients with hypertensive intracerebral hemorrhage(HICH).Methods:A total of 80 patients with HICH who visited our hospital from January 2024 to December 2024 were...Objective:To analyze the value of continuous care for patients with hypertensive intracerebral hemorrhage(HICH).Methods:A total of 80 patients with HICH who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into two groups.The observation group received continuous care,while the control group received routine care.The Functional Independence Measure(FIM),Symptom Checklist-90(SCL-90),and complications were compared between the two groups.Results:The FIM score of the observation group was higher than that of the control group(P<0.05).The SCL-90 score of the observation group was lower than that of the control group(P<0.05).The incidence of HICH complications in the observation group was lower than that in the control group(P<0.05).Conclusion:The application of continuous care in HICH nursing can enhance patients’independent living skills outside the hospital,optimize their psychosocial adaptation,and is safe and efficient.展开更多
The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel i...The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.展开更多
High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pos...High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.展开更多
The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravellin...The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravelling the involved photophysical processes and exploring its potential applications in diverse fields.Here,we proved that the enhanced thermal-field can boost the CWL emission.Using rare earth(RE)ions(Pr^(3+),Er^(3+)and Yb^(3+))as the photothermally active centers in Y_(2)SiO_(5)phosphor,we reveal that absorbing more excitation energy and isolating the heat conduction can lead to rapid thermal field accumulation inside the material,thereby significantly reducing the excitation threshold and enhancing white light emission.Our results might have important implications for the understanding of thermally enhanced radiation and may facilitate the CWL commercial application in night vision,bioimaging,and non-destructive detection.展开更多
基金Sponsored by National Natural Science Foundation of China(Grant No.12174101)Fundamental Research Funds for the Central Universities(Grant No.2022MS051).
文摘The analytic continuation serves as a crucial bridge between quantum Monte Carlo calculations in imaginary-time formalism,specifically the Green's functions,and physical measurements(the spectral functions)in real time.Various approaches have been developed to enhance the accuracy of analytic continuation,including the Padéapproximation,the maximum entropy method,and stochastic analytic continuation.In this study,we employ different deep learning techniques to investigate the analytic continuation for the quantum impurity model.A significant challenge in this context is that the sharp Abrikosov-Suhl resonance peak may be either underestimated or overestimated.We fit both the imaginary-time Green's function and the spectral function using Chebyshev polynomials in logarithmic coordinates.We utilize Full-Connected Networks(FCN),Convolutional Neural Networks(CNNs),and Residual Networks(ResNet)to address this issue.Our findings indicate that introducing noise during the training phase significantly improves the accuracy of the learning process.The typical absolute error achieved is less than 10-4.These investigations pave the way for machine learning to optimize the analytic continuation problem in many-body systems,thereby reducing the need for prior expertise in physics.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金The Project of China Hospital Development Research Institute,Shanghai Jiao Tong University(No.CHDI-2022-B-11)Shanghai Jiao Tong University School of Medicine:Nursing Development Program。
文摘Objective:To explore the application effect of a doctor-nurse cooperation follow-up model based on an Internet platform in the continuation of care for patients after uro-oncology surgery.Methods:A convenient sampling method was used to select patients with urinary system tumors who underwent surgery in the Department of Urology in Grade III A general hospital in Shanghai from May to August 2022.Patients who underwent surgery from May to June 2022 were assigned to the control group,and those who underwent surgery from July to August 2022 were assigned to the experimental group.The control group received routine post-discharge nursing health education and telephone follow-up.On the basis of routine discharge guidance,the experimental group implemented the intervention method based on the Internet platform in continuation care.The levels of self-management efficacy,satisfaction,and incidence of unplanned readmission were compared one month after discharge between the two groups.Results:One month after discharge,the self-management efficacy of the experimental group(90.15±7.92)was significantly higher than that of the control group(79.10±7.84),and the patient satisfaction score(97.83±2.32)was significantly higher than that of the control group(90.23±2.58),with statistical significance(P<0.05).Additionally,the incidence of unplanned readmissions within one month after discharge in the experimental group(1.59%)was slightly lower than that in the control group(4.84%).Conclusion:The doctor-nurse cooperation follow-up model based on the Internet platform in continuation care can significantly improve the self-management efficiency of patients after discharge and enhance patient satisfaction,providing a new approach for discharge follow-up of urological tumor patients after surgery.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by the‘Pioneer’and‘Leading Goose’R&D Program of Zhejiang(Grant No.2023C02018)Zhejiang Provincial Natural Science Foundation of China(Grant No.LTGN23D010002)+2 种基金National Natural Science Foundation of China(Grant No.42371385)Funds of the Natural Science Foundation of Hangzhou(Grant No.2024SZRYBD010001)Nanxun Scholars Program of ZJWEU(Grant No.RC2022010755).
文摘Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored.
文摘Pediatric type 1 diabetes(T1D)is a lifelong condition requiring meticulous glucose management to prevent acute and chronic complications.Conventional management of diabetic patients does not allow for continuous monitoring of glucose trends,and can place patients at risk for hypo-and hyperglycemia.Continuous glucose monitors(CGMs)have emerged as a mainstay for pediatric diabetic care and are continuing to advance treatment by providing real-time blood glucose(BG)data,with trend analysis aided by machine learning(ML)algorithms.These predictive analytics serve to prevent against dangerous BG variations in the perioperative environment for fasted children undergoing surgical stress.Integration of CGM data into electronic health records(EHR)is essential,as it establishes a foundation for future technologic interfaces with artificial intelligence(AI).Challenges in perioperative CGM implementation include equitable device access,protection of patient privacy and data accuracy,ensuring institution of standardized protocols,and financing the cumbersome healthcare costs associated with staff training and technology platforms.This paper advocates for implementation of CGM data into the EHR utilizing multiple facets of AI/ML algorithms.
基金Supported by Yunnan Province Academician(Expert)Workstation Project,No.202305AF150097the Basic Research Program of Yunnan Province(Kunming Medical University Joint Special Project),No.202101AY070001-276+3 种基金the National Natural Science Foundation of China,No.82160159the Key Project Program of Yunnan Province(Kunming Medical University Joint Special Project),No.202301AY070001-013the Major Science and Technology Project of Yunnan Province,No.202202AA100004the Double First-class University Construction Project of Yunnan University,No.CY22624106.
文摘BACKGROUND Continuous glucose monitoring(CGM)metrics,such as time in range(TIR)and glycemic risk index(GRI),have been linked to various diabetes-related complications,including diabetic foot(DF).AIM To investigate the association between CGM-derived indicators and the risk of DF in individuals with type 2 diabetes mellitus(T2DM).METHODS A total of 591 individuals with T2DM(297 with DF and 294 without DF)were enrolled.Relevant clinical data,complications,comorbidities,hematological parameters,and 72-hour CGM data were collected.Logistic regression analysis was employed to examine the relationship between these measurements and the risk of DF.RESULTS Individuals with DF exhibited higher mean blood glucose(MBG)levels and increased proportions of time above range(TAR),TAR level 1,and TAR level 2,but lower TIR(all P<0.001).Patients with DF had significantly lower rates of achieving target ranges for TIR,TAR,and TAR level 2 than those without DF(all P<0.05).Logistic regression analysis revealed that GRI,MBG,and TAR level 1 were positively associated with DF risk,while TIR was inversely correlated(all P<0.05).Achieving TIR and TAR was inversely correlated with white blood cell count and glycated hemoglobin A1c levels(P<0.05).Additionally,achieving TAR was influenced by fasting plasma glucose,body mass index,diabetes duration,and antidiabetic medication use.CONCLUSION CGM metrics,particularly TIR and GRI,are significantly associated with the risk of DF in T2DM,emphasizing the importance of improved glucose control.
文摘Continuous annealing simulation is used in studying the influence of continuous annealing process parameters on the microstructure and mechanical properties of a GPa-grade C-Si-Mn-Cr-Mo dual-phase steel.The experimental results indicate that increasing soaking time increases the volume fraction of martensite and the size of martensite islands, as well as tensile strength(TS) and yield strength(YS),while decreasing plasticity.As the steel slowly cools to a lower temperature prior to final quenching, TS and YS decrease, whereas elongation increases.The decrease in martensite content is due to the partial decomposition of austenite into ferrite during long slow cooling before quenching.As overaging temperature increases because of the tempering of martensite and aging of ferrite, TS decreases and YS increases.Work hardening analysis shows that in the initial stage of deformation, low overaging temperatures enhance work hardening ability.
文摘[Objectives]This study was conducted to investigate the mechanism of continuous cropping obstacles in Polygonatum odoratum.[Methods]Three treatments were established:continuous cropping(two consecutive crops),first-crop control(with Phaseolus vulgaris as the preceding crop),and blank control.The effects of continuous cropping on the functional diversity of soil microorganisms,soil enzyme activities,and soil nutrient coordination in the rhizosphere soil of P.odoratum during different growth stages were investigated.[Results](1)Continuous cropping increased the carbon source metabolic capacity,Shannon diversity index,and richness of rhizosphere soil microorganisms by 3.2%-14.7%,0.9%-3.5%,and 1.3%-12.5%,respectively,but the differences were not significant.(2)Principal component analysis indicated that during the middle stage of rhizome expansion,continuous cropping significantly altered the characteristics of microbial carbon metabolism,and the microbial communities utilizing carbohydrates,amino acids,polymers,carboxylic acids and amines as carbon sources exhibited vigorous metabolism.(3)Continuous cropping significantly reduced the activities of urease,polyphenol oxidase,and acid phosphatase in rhizosphere soil,with decreases of 24.4%-39.5%,3.2%-14.8%,and 7.9%-18.2%,respectively.The activities of catalase and invertase sometimes exceeded and sometimes fell below those of the first crop,showing no consistent pattern.(4)Under continuous cropping conditions,nutrient imbalance occurred in the rhizosphere soil,characterized by nitrogen deficiency and phosphorus surplus.(5)Grey correlation analysis indicated that available phosphorus content,alkali-hydrolyzable nitrogen content and polyphenol oxidase activity in rhizosphere soil were the main factors influencing microbial functional diversity.[Conclusions]This study provides a theoretical basis for understanding the formation mechanism of continuous cropping obstacles in P.odoratum.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFB3603403,2021YFB3600502)the National Natural Science Foundation of China(Grant Nos.62075040,62301150)+3 种基金the Southeast University Interdisciplinary Research Program for Young Scholars(2024FGC1007)the Start-up Research Fund of Southeast University(RF1028623164)the Nanjing Science and Technology Innovation Project for Returned Overseas Talent(4206002302)the Fundamental Research Funds for the Central Universities(2242024K40015).
文摘Benefiting from the widespread potential applications in the era of the Internet of Thing and metaverse,triboelectric and piezoelectric nanogenerators(TENG&PENG)have attracted considerably increasing attention.Their outstanding characteristics,such as self-powered ability,high output performance,integration compatibility,cost-effectiveness,simple configurations,and versatile operation modes,could effectively expand the lifetime of vastly distributed wearable,implantable,and environmental devices,eventually achieving self-sustainable,maintenance-free,and reliable systems.However,current triboelectric/piezoelectric based active(i.e.self-powered)sensors still encounter serious bottlenecks in continuous monitoring and multimodal applications due to their intrinsic limitations of monomodal kinetic response and discontinuous transient output.This work systematically summarizes and evaluates the recent research endeavors to address the above challenges,with detailed discussions on the challenge origins,designing strategies,device performance,and corresponding diverse applications.Finally,conclusions and outlook regarding the research gap in self-powered continuous multimodal monitoring systems are provided,proposing the necessity of future research development in this field.
文摘Background:Long-term exposure to light has emerged as a novel risk factor for metabolic diseases.The whitening of brown adipose tissue(BAT)may play an important role in metabolic disorders caused by long-term continuous light exposure.This study aimed to investigate the morphological and functional alterations in BAT under continuous light conditions and to identify traditional Chinese medicine compounds capable of reversing these changes.Methods:A metabolic disorder model was established by subjecting mice to continuous light exposure for 5 weeks.During this period,body weight,food intake,and body fat percentage were monitored.Serum levels of triglyceride(TG),total cholesterol(TC),high density lipoprotein cholesterol(HDL-C),and low density lipoprotein cholesterol(LDL-C)were measured to assess lipid metabolism.Histological changes in BAT were examined using H&E staining.The expression of the thermogenic marker uncoupling protein 1(UCP1)in BAT was determined by RT-qPCR and Western blot to evaluate thermogenic function.RNA sequencing(RNA-seq)was employed to identify differentially expressed genes(DEGs)involved in BAT whitening induced by prolonged continuous light exposure.DEGs were analyzed using the connectivity map(CMap)database to identify potential preventive and therapeutic compounds.The therapeutic efficacy of the selected compounds was subsequently evaluated using the above indicators,and key pathways were validated through western blot analysis.Results:After 5 weeks of continuous light exposure,mice exhibited increased body fat percentage and serum levels of TG,impaired mitochondrial function,reduced thermogenic capacity,and whitening of BAT.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses indicated that BAT whitening was primarily associated with the adenosine 5'-monophosphate-activated protein kinase(AMPK)signaling pathway,fatty acid metabolism,and circadian rhythm.Ten hub genes identified using Cytoscape were mainly related to AMPK signaling and heat shock proteins.In vivo experiments showed that cordycepin significantly attenuated the increase in body fat percentage caused by prolonged light exposure.This effect was mediated by activation of the AMPK/PGC-1α/UCP1 signaling pathway,which restored the multilocular morphology and thermogenic function of BAT.Conclusion:Cordycepin mitigates continuous light-induced BAT whitening and metabolic disturbances by activating the AMPK signaling pathway.
基金financially supported by the Strategic Environmental Research and Development Program(Grant No.ER19-1075)。
文摘The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.
基金the financial support of National Key Research and Development Plan(No.2021YFB3702000)National Natural Science of China(Nos.52074076,52174306 and U20A20272)Fundamental Research Funds for the Central Universities(Nos.N2225023 and N2425006).Author information。
文摘During the continuous casting process of low carbon steel,the solidified hook formed in the mold has great effects on the surface quality of the cast slab.Some factory experiments have been conducted to investigate the microscopic characteristics and reveal the influence of process parameters on solidified hooks.The depth of the hooks showed a positive correlation with the deflection angle,length,and oscillation mark(OM)depth,which indicates that the OM depth can serve as an approximate indicator for evaluating the depth of the solidified hooks.On the wide and narrow faces of the cast slab,the depth of the solidified hooks and the temperature distribution in the mold show opposite trends,with lower depths of solidified hooks at positions with higher temperatures.In addition,the influence of process parameters on solidified hooks was analyzed.With the increase in superheat,not only the depth of solidified hooks gradually decreases,but also the ratio of depression-typed marks increases.Increasing casting speed and decreasing immersion depth of the submerged entry nozzle will both lead to a decrease in the depth of the solidified hook.
文摘Objective:To analyze the value of continuous care for patients with hypertensive intracerebral hemorrhage(HICH).Methods:A total of 80 patients with HICH who visited our hospital from January 2024 to December 2024 were selected as samples and randomly divided into two groups.The observation group received continuous care,while the control group received routine care.The Functional Independence Measure(FIM),Symptom Checklist-90(SCL-90),and complications were compared between the two groups.Results:The FIM score of the observation group was higher than that of the control group(P<0.05).The SCL-90 score of the observation group was lower than that of the control group(P<0.05).The incidence of HICH complications in the observation group was lower than that in the control group(P<0.05).Conclusion:The application of continuous care in HICH nursing can enhance patients’independent living skills outside the hospital,optimize their psychosocial adaptation,and is safe and efficient.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant No.U1860111)Weifang Science and Technology Development Plan Project(Project No.2023ZJ1166).
文摘The crankshaft is subjected to complex rotational centrifugal force,periodic gas inertia force,and reciprocating inertia force during its working process.Consequently,the homogeneity requirement for crankshaft steel is exceptionally high.The distribution characteristics of center segregation and spot segregation of continuous casting bloom 42CrMoA crankshaft steel were analyzed by experiments,and the control mechanism of spot segregation by soft reduction zone and reduction amount was discussed.When the center solid fraction is between 0.61 and 1.00,an 8-mm soft reduction has a negligible impact on the flow of liquid steel at the end of solidification.Although it effectively improves center segregation,the improvement of spot segregation is limited.On the other hand,when the center solid fraction is between 0.31 and 1.00,a reduction of 10–12 mm,along with an expanded reduction zone and increased reduction amount,significantly promotes the flow of liquid steel at the end of solidification,reduces the size of equiaxed grains,mitigates the center negative segregation,and decreases the maximum size of spot segregation from 2954.29 to 1354.07μm.The number of spot segregations and the solutes enrichment degree of C,Cr,and Mn have also been significantly improved.An appropriate soft reduction zone and reduction amount can markedly ameliorate the semi-macro spot segregation of crankshaft steel blooms,thereby providing high-quality raw materials for subsequent products and enhancing the competitiveness of crankshaft products.
基金supported by Fund of the National Natural Science Foundation of China (Grant No. 52375553)。
文摘High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.
基金supported by the National Natural Science Foundation of China(12104336,U20A20211,62075152,12004274)Fundamental Research Program of Shanxi Province(20210302124162)。
文摘The continuous white light(CWL)covering the visible and near-infrared(NIR)regions can be observed in various absorptive media excited by continuous-wave(CW)lasers.It is valuable to stimulate more efforts in unravelling the involved photophysical processes and exploring its potential applications in diverse fields.Here,we proved that the enhanced thermal-field can boost the CWL emission.Using rare earth(RE)ions(Pr^(3+),Er^(3+)and Yb^(3+))as the photothermally active centers in Y_(2)SiO_(5)phosphor,we reveal that absorbing more excitation energy and isolating the heat conduction can lead to rapid thermal field accumulation inside the material,thereby significantly reducing the excitation threshold and enhancing white light emission.Our results might have important implications for the understanding of thermally enhanced radiation and may facilitate the CWL commercial application in night vision,bioimaging,and non-destructive detection.