空泡份额是核反应堆两相流中关注的重点参数之一,是检验压水堆系统级程序计算能力的重要物理量。为加速我国压水堆软件自主化进程,中国广核集团有限公司开发了压水堆热工水力系统分析软件LOCUST。为支持LOCUST在冷却剂丧失事故(Loss of ...空泡份额是核反应堆两相流中关注的重点参数之一,是检验压水堆系统级程序计算能力的重要物理量。为加速我国压水堆软件自主化进程,中国广核集团有限公司开发了压水堆热工水力系统分析软件LOCUST。为支持LOCUST在冷却剂丧失事故(Loss of Coolant Accident,LOCA)等事故分析中的应用,本文基于瑞典通用电机公司开展的FRIGG空泡份额实验,利用LOCUST对不同功率分布、入口过冷度以及质量流速的实验工况进行计算验证。评估结果表明,所有工况空泡份额相对误差的平均值为10.60%,单个工况最大相对误差的平均值不超过16.62%,部分误差可能是由流型转换判定、高估液相相变换热等原因引起。本文总体验证了LOCUST在不同功率分布、入口过冷度以及质量流速工况下对空泡份额的计算能力,为后续软件模型改进提供了参考。展开更多
针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有...针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。展开更多
文摘空泡份额是核反应堆两相流中关注的重点参数之一,是检验压水堆系统级程序计算能力的重要物理量。为加速我国压水堆软件自主化进程,中国广核集团有限公司开发了压水堆热工水力系统分析软件LOCUST。为支持LOCUST在冷却剂丧失事故(Loss of Coolant Accident,LOCA)等事故分析中的应用,本文基于瑞典通用电机公司开展的FRIGG空泡份额实验,利用LOCUST对不同功率分布、入口过冷度以及质量流速的实验工况进行计算验证。评估结果表明,所有工况空泡份额相对误差的平均值为10.60%,单个工况最大相对误差的平均值不超过16.62%,部分误差可能是由流型转换判定、高估液相相变换热等原因引起。本文总体验证了LOCUST在不同功率分布、入口过冷度以及质量流速工况下对空泡份额的计算能力,为后续软件模型改进提供了参考。
文摘针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。