神经辐射场(NeRF)在二维图像到三维场景重建领域展现出优异的性能,使用二维图像作为训练数据,能够重建出场景的三维结构,并能进行高质量的新视图渲染。尽管NeRF在三维场景重建领域是十分有效的,但也存在训练速度慢、推理时间长的问题,...神经辐射场(NeRF)在二维图像到三维场景重建领域展现出优异的性能,使用二维图像作为训练数据,能够重建出场景的三维结构,并能进行高质量的新视图渲染。尽管NeRF在三维场景重建领域是十分有效的,但也存在训练速度慢、推理时间长的问题,并且样本质量与三维场景重建质量密切关联。为解决NeRF在低样本质量情况下的高质量三维重建问题,本文使用2组不同哈希编码的NeRF来学习同一个场景,评估候选视图信息增益之间的差距来引导视图采样。提出一种基于RGB特征的下一个最优视图(next best view)导航技术新框架,该框架在稀疏训练数据上具有很强的鲁棒性,能够通过RGB特征评估捕获高信息增益的下一个最优视图,并优化NeRF训练,可以用最少的额外视图来提高新视图合成质量。通过对NeRF训练流程的优化,网络收敛速度提升大约10倍,显存占用降低39.8%,大量实验验证了该模型的有效性和鲁棒性。展开更多
In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in convent...In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.展开更多
A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmit...A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme展开更多
A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,...A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,239)4-CSOC(k0/n0=6/7, J= 8) code in ITU-TG. 75.1, has a lower redundancy and better error-correction performance, furthermore, its net coding gain(NCG) is respectively 0. 46 dB, 0.43 dB morethanthatofRS(255,239)+CSOC(k0/n0= 6/7, J= 8) code and BCH(3860,3824)+BCH (2 040,1 930) code in ITU TG. 75. 1 at the third iteration for the bit error rate(BER) of 10^-12. Therefore, the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul, ultra large-capacity and ultra high-speed WDM optical communication systems.展开更多
The coding gains including self-gain, mutual-gain and their variations for coding memory are denned, and the formulas for computing the gains are derived. The coding gains, used as the criteria, will be enable us to s...The coding gains including self-gain, mutual-gain and their variations for coding memory are denned, and the formulas for computing the gains are derived. The coding gains, used as the criteria, will be enable us to select an efficient code for memory system design quantitatively. Finally, the numerical results of some examples are analysed and discussed.展开更多
A novel multi-point sensing scheme to improve the signal-to-noise ratio(SNR),temperature measurement range of the fiber Bragg grating(FBG)sensors is proposed.The new sensing scheme adopted a composite coding technique...A novel multi-point sensing scheme to improve the signal-to-noise ratio(SNR),temperature measurement range of the fiber Bragg grating(FBG)sensors is proposed.The new sensing scheme adopted a composite coding technique based on Simplex codes and Golay codes and time division multiplexing technique to enhance the performance of the sensing system.Simulation results,in good agreement with the theory,confirmed that the maximum SNR enhancement of the sensor system employing composite coding based on 15-bit Simplex codes and 16-bit Golay codes was approximately 6.01 dB in comparison to the conventional single pulse case.展开更多
文摘神经辐射场(NeRF)在二维图像到三维场景重建领域展现出优异的性能,使用二维图像作为训练数据,能够重建出场景的三维结构,并能进行高质量的新视图渲染。尽管NeRF在三维场景重建领域是十分有效的,但也存在训练速度慢、推理时间长的问题,并且样本质量与三维场景重建质量密切关联。为解决NeRF在低样本质量情况下的高质量三维重建问题,本文使用2组不同哈希编码的NeRF来学习同一个场景,评估候选视图信息增益之间的差距来引导视图采样。提出一种基于RGB特征的下一个最优视图(next best view)导航技术新框架,该框架在稀疏训练数据上具有很强的鲁棒性,能够通过RGB特征评估捕获高信息增益的下一个最优视图,并优化NeRF训练,可以用最少的额外视图来提高新视图合成质量。通过对NeRF训练流程的优化,网络收敛速度提升大约10倍,显存占用降低39.8%,大量实验验证了该模型的有效性和鲁棒性。
基金Project(2006AA01Z270)supported by the National High Technology Research and Development Program of ChinaProject(U0635003)supported by the National Natural Science Foundation of Guangdong Province,ChinaProject(2007F07)supported by the National Science Foundation of Shaanxi Province,China
文摘In order to obtain coding gain along with diversity gain,rotation code was applied to cooperative diversity employing decoded-and-forward cooperative protocol.Different from the same two symbols transmitted in conventional repetition-coded scheme,two different symbols were transmitted separately in two successive timeslots in the proposed rotation-coded cooperative diversity.In this way,constellation spread in the available two-dimensional signal space rather than on a single-dimensional line in repetition-coded scheme,which was supposed to be responsible for the additional coding gain.Under the proposed cooperative transmission model,upper bounds for the symbol-error-rate(SER)of cooperative diversity based on repetition code and rotation code were derived respectively.Both analytical and simulated results show that cooperative diversity based on rotation code can obtain an improved coding gain(by about 2 dB)than repetition-coded scheme without the expense of power or bandwidth.
基金This project was supported by the National Natural Science Foundation of China (60172018) .
文摘A differential modulation scheme using space-time block codes is put forward. Compared with other schemes, our scheme has lower computational complexity and has a simpler decoder. In the case of three or four transmitter antennas, our scheme has a higher rate a higher coding gain and a lower bit error rate for a given rate. Then we made simulations for space-time block codes as well as group codes in the case of two, three, four and five transmit antennas. The simulations prove that using two transmit antennas, one receive antenna and code rate of 4 bits/s/Hz, the differential STBC method outperform the differential group codes method by 4 dB. Useing three, four and five transmit antennas, one receive antenna, and code rate of 3 bits/s/Hz are adopted, the differential STBC method outperform the differential group codes method by 5 dB, 6. 5 dB and 7 dB, respectively. In other words, the differential modulation scheme based on space-time block code is better than the corresponding differential modulation scheme
基金National High Technology Development Program(863) of China (2005AA123730) Natural Science Foundation of Chongqing University of Posts & Telecommunications(A2006 -53)
文摘A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to he suitable for WDM optical transmission systems is proposed. The simulation resuhs show that this new concatenated code. compared with the RS(255,239)4-CSOC(k0/n0=6/7, J= 8) code in ITU-TG. 75.1, has a lower redundancy and better error-correction performance, furthermore, its net coding gain(NCG) is respectively 0. 46 dB, 0.43 dB morethanthatofRS(255,239)+CSOC(k0/n0= 6/7, J= 8) code and BCH(3860,3824)+BCH (2 040,1 930) code in ITU TG. 75. 1 at the third iteration for the bit error rate(BER) of 10^-12. Therefore, the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul, ultra large-capacity and ultra high-speed WDM optical communication systems.
文摘The coding gains including self-gain, mutual-gain and their variations for coding memory are denned, and the formulas for computing the gains are derived. The coding gains, used as the criteria, will be enable us to select an efficient code for memory system design quantitatively. Finally, the numerical results of some examples are analysed and discussed.
基金Graduate Project Foundation of Shanghai Polytechnic University,China(No.A01GY18F022)
文摘A novel multi-point sensing scheme to improve the signal-to-noise ratio(SNR),temperature measurement range of the fiber Bragg grating(FBG)sensors is proposed.The new sensing scheme adopted a composite coding technique based on Simplex codes and Golay codes and time division multiplexing technique to enhance the performance of the sensing system.Simulation results,in good agreement with the theory,confirmed that the maximum SNR enhancement of the sensor system employing composite coding based on 15-bit Simplex codes and 16-bit Golay codes was approximately 6.01 dB in comparison to the conventional single pulse case.