Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, ...Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing (OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algo- rithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.展开更多
To solve the problem of the large Doppler frequency offset in the LEO communication system, this paper studies a rapid PN code acquisition method based on the PMF-FFT architecture, which searches the phase and frequen...To solve the problem of the large Doppler frequency offset in the LEO communication system, this paper studies a rapid PN code acquisition method based on the PMF-FFT architecture, which searches the phase and frequency offset and at the same time reduces the acquisition time. It presents an improved method equivalent to windowing function and uses windowing process to overcome the attenuation of related peak envelope caused by partial matched filters.展开更多
Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is first...Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.展开更多
针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计...针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。展开更多
针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对...针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对全球定位系统(GPS)C/A码信号进行仿真验证。研究结果表明:延迟滤波器阶数越大,码多普勒的补偿效果越好;在采样率为5 MHz时,采用三阶Farrow结构的分数阶延迟滤波器捕获损耗降低至0.2 d B。展开更多
基金supported by the National Natural Science Foundation of China(No.61401475)
文摘Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Dop- pler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing (OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algo- rithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.
文摘To solve the problem of the large Doppler frequency offset in the LEO communication system, this paper studies a rapid PN code acquisition method based on the PMF-FFT architecture, which searches the phase and frequency offset and at the same time reduces the acquisition time. It presents an improved method equivalent to windowing function and uses windowing process to overcome the attenuation of related peak envelope caused by partial matched filters.
文摘Range-Doppler (RD) method and Reverse-Range-Doppler (RRD) method are combined together to achieve automatic geocoding of Synthetic Aperture Radar (SAR) image quickly and accurately in the paper. The RD method is firstly used to locate the four corners of the image, then the other pixels of the image can be located by Reverse-Range-Doppler (RRD) method. Resampling is performed at last. The approach has an advantage over previous techniques in that it does not require ground control points and is independent of spacecraft attitude knowledge or control. It can compensate the shift due to the assumed Doppler frequency in SAR image preprocessing. RRD simplifies the process of RD, therefore speeds up the computation. The experimental results show that a SAR image can be automated geocoded in 30 s using the single CPU (3 GHz) with 1 G memory and an accuracy of 10 m is attainable with this method.
文摘针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。
文摘针对全球导航卫星系统(GNSS)信号捕获中存在伪码多普勒,提出一种基于时延控制的伪码多普勒补偿方法,通过数字延迟滤波器补偿由于伪码多普勒引入的本地码和接收信号的相位不匹配。给出包括码多普勒补偿在内的新的GNSS信号捕获结构,并对全球定位系统(GPS)C/A码信号进行仿真验证。研究结果表明:延迟滤波器阶数越大,码多普勒的补偿效果越好;在采样率为5 MHz时,采用三阶Farrow结构的分数阶延迟滤波器捕获损耗降低至0.2 d B。