As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike ...As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike the statistical description of the spatial distribution of randomly generated AE signals,spatial correlation modeling is based mainly on short-range correlation considering the interrelationship of adjacent signals.As a new idea from percolation models,the covering strategy is used to build the most representative cube cluster,which corresponds to the critical scale at peak stress.Its modeling process of critical cube cluster depends strongly on the full connection of the main fracture network,and the corresponding cube for coverage is termed the critical cube.The criticality pertains to not only the transition of local-to-whole connection of the fracture network but also the increasing-to-decreasing transition of the deviatoric stress with an obvious stress drop in the brittle failure of granite.Determining a reasonable critical cube guarantees the best observation scale for investigating the failure process.Besides,the topological connection induces the geometric criticality of three descriptors,namely anisotropy,pore fraction,and specific surface area,which are evaluated separately and effectively.The results show that cluster modeling based on the critical cube is effective and has criticality in both topology and geometry,as well as the triaxial behavior.Furthermore,the critical cube length presents a high confidence probability of being correlated to the mineral particle size.Besides,its pore fraction of cube cluster is influenced strongly by the critical cube length and confining pressure.展开更多
The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adoptin...The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.展开更多
The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene o...The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene on silanol H3SiOH with two coordination forms, and the model Brrnsted acid sites of zeolite cluster H3Si(OH)AI(OH)2SiH3 upon the interaction with thiophene have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31G basis level for hydrogen atoms and 6-31+G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The calculated results showed that the nature of interactions leading to the formation of the zeolite cluster-thiophene and silanol-thiophene complexes was associated with the van der Waals force confirmed by a slight change of geometric structures and properties. Thiophene is adsorbed on bridging hydroxyl group prior to silanol OH group judging from the magnitude of adsorption heat. The cluster model calculation reproducing the experimental prediction to form the experimental adsorption spectra of thiophene in HZSM-5 zeolite has illustrated the validity of the proposed adsorption models.展开更多
To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of t...To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of the RWA formalism.The total wave functions were obtained using the generator coordinate method with microscopic cluster wave functions.Based on these wave functions,we calculated the overlap amplitudes to extract the relative motion and spatial correlations between clusters.The computed energy spectra showed reasonable agreement with the experimental data,emphasizing the effectiveness of the present framework for investigating dinucleon correlations in light nuclei.Our results revealed the presence of both dinucleon-like and cigar-like configurations in the ground states of^(6)He and^(6)Be,indicating a coexistence of compact and extended cluster structures.Furthermore,the 2_(1)^(+)state of^(6)He revealed a pronounced dineutron structure,with strong spatial correlations between the two valence neutrons.We also performed calculations for the higher-lying 2_(1)^(+)state,which showed a more spatially extended structure and provided potential references for future experimental investigations.These findings demonstrated that the TCOA method served as a powerful tool to explore cluster dynamics and dinucleon features in light,weakly bound nuclear systems.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter e...Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter exhibiting well developed low-energy K^(π)=0_(1)^(+),k^(π)=2_(1)^(+) and π^(π)=0_(1)^(-) rotational bands in its spectrum.A simple algebraic Hamiltonian,consisting of dynamical symmetry,residual and vertical mixing parts is used to describe these three lowest rotational bands of positive and negative parity in^(24)Mg.A good description of the excitation energies is obtained by considering only the SU(3)cluster states restricted to the stretched many-particle Hilbert subspace,built on the leading Pauli allowed SU(3)multiplet for the positive-and negative-parity states,respectively.The coupling to the higher cluster-model configurations allows us to describe the known low-lying experimentally observed B(E2)transition probabilities within and between the cluster states of the three bands under consideration without the use of an effective charge.展开更多
As a cluster overlap amplitude,the reduced-width amplitude is an important physical quantity for analyzing clustering in the nucleus depending on specified channels and has been calculated and widely applied in nuclea...As a cluster overlap amplitude,the reduced-width amplitude is an important physical quantity for analyzing clustering in the nucleus depending on specified channels and has been calculated and widely applied in nuclear cluster physics.In this review,we briefly revisit the theoretical framework for calculating the reduced-width amplitude,as well as the outlines of cluster models to obtain microscopic or semi-microscopic cluster wave functions.We also introduce the recent progress related to cluster overlap amplitudes,including the implementation of cross-section estimation and extension to three-body clustering analysis.Comprehensive examples are provided to demonstrate the application of the reduced-width amplitude in analyzing clustering structures.展开更多
Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,...Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,a new-type distribution network digital twin topology modeling method based on Common Information Model(CIM)specifications and spectral clustering is proposed.Firstly,according to the specifications of the CIM standard,the digital twin topology models of distributed resources are extended and established.Secondly,based on the digital twin topology models of distributed resources,a digital twin aggregation modelling method for new-type distribution network is proposed based on spectral clustering.Furthermore,an online linked update strategy for the digital twin model of new-type distribution network that integrates real-time topology states is proposed.Finally,a case study is conducted on a distribution network in a certain demonstration area in China,and the results verify the practicability and effectiveness of the method proposed in this paper.This lays the foundation for the application of electrical network twin analysis,such as power flow calculation,optimal power flow,economic dispatch,and safety check,in a new-type distribution network that includes diversified distributed resources.展开更多
A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of min...A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.展开更多
In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the s...In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the specimen when the temperature is below 300?C, and have partial coalescence when the temperature is up to 450?C, then form macro-cracks when the temperature is above 600?C. There is more inter-granular cracking than intra-granular cracking, and their ratio increases with increasing temperature.The micro-cracks are almost constant when the temperature decreases from 900?C to room temperature, except for quartz α–β phase transition temperature(573?C). The fracture evolution process is obviously affected by these cracks, especially at 600–900?C. Elevated temperature leads to easily developed displacement between the grains, and the capacity to store strain energy becomes weaker, corresponding to the plasticity of granite after heat treatment.展开更多
To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the ...To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the cube-cluster model.First,the complete connection of the fracture network is regarded as a critical state.Then,according to the Hoshen-Kopelman(HK)algorithm,the real-time estimation of fracture con-nection is effectively made and a dichotomy between cube size and pore fraction is suggested to solve such a challenge of the one-to-one match between complete connection and cluster size.After,the 3D cube clusters are decomposed into orthogonal layer clusters,which are then transformed into the ellip-soid models.Correspondingly,the anisotropy evolution of fracture network could be visualized by three orthogonal ellipsoids and quantitatively described by aspect ratio.Besides,the other three quantities of centroid axis length,porosity,and fracture angle are analyzed to evaluate the evolution of cube cluster.The result shows the sample dilatancy is strongly correlated to four quantities of aspect ratio,centroid axis length,and porosity as well as fracture angle.Besides,the cube cluster model shows a potential pos-sibility to predict the evolution of fracture angle.So,the cube cluster model provides an in-depth view of spatial correlation to describe the AE signal-cloud.展开更多
Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the clust...Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the cluster model.Eight Sr‐doped La2O3cluster models were built from pure La2O3clusters that were used previously to model the La2O3catalyst.These form two distinct categories,namely,those without a radical character(LaSrO2(OH),La2SrO4,La3SrO5(OH),and La5SrO8(OH))and those with a radical character(LaSrO3,La2SrO4(OH),La3SrO6,and La5SrO9).The potential‐energy surface for CH4activation to form a CH3radical at different Sr-O and La-O pair sites on these Sr‐doped La2O3clusters was calculated to study the Sr‐doping effect on the OCM catalytic activity.CH4physisorption and chemisorption energies,and activation barriers,and CH3desorption energies were predicted.Compared with the pure La2O3clusters,in general,the Sr‐doped La2O3clusters are thermodynamically and kinetically more reactive with CH4.For the Sr‐doped La2O3clusters without the radical character,the Sr-O pair site is more reactive with CH4than the La-O pair site,although a direct release of the CH3radical is also highly endothermic as in the case of the pure La2O3clusters.In contrast,for the Sr‐doped La2O3clusters with a radical character,the activation of CH4at the oxygen radical site and the release of the CH3radical are much easier.Thus,our calculations suggest that the Sr dopant prompts the OCM catalytic activity of the La2O3catalyst by providing a highly active oxygen‐radical site and by strengthening the basicity of the M-O pair site,which leads to lower CH4activation energies and lower CH3desorption energies.展开更多
Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators...Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance.展开更多
In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a...In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.展开更多
The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures o...The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.展开更多
With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interf...With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods.展开更多
The symmetric spin-orbit interactions of one-gluon-exchange and confinement are included in the nucleon-nucleon phase shift calculation in the framework of quark delocalization eolour screening model. The spin-orbit i...The symmetric spin-orbit interactions of one-gluon-exchange and confinement are included in the nucleon-nucleon phase shift calculation in the framework of quark delocalization eolour screening model. The spin-orbit interaction has little influence on D wave phase shift. For the triplet P waves, aPT is in good agreement with the experimental data and 3pLs is attractive but not strong enough, whereas 3 Pc is too strongly repulsive. Our results indicate that the symmetric spin-orbit interaction of one-gluon-exchange and confinement potential cannot give a good description of the triplet P wave phase shifts. More sophisticated considerations, the delocalization depending on the relative orientation between two cluster, might be needed to improve the description of P-wave NN interaction.展开更多
The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in t...The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.展开更多
The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic ...The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic properties of 1% phosphorus and steam modified HZSM-5 zeolites have been investigated. The X-ray diffraction (XRD) results exhibit that there is considerable variation in the relative intensity of the individual diffraction peaks. The acidity of the samples decreases with an increase in the steaming temperature, which is determined by the IR of adsorbed pyridine and temperature programmed desorption (TPD) of ammonia. The oxidation state of phosphorus shown by XPS is +5, and a model for surface structure modification is proposed. The nitrogen adsorption isotherm for all samples is a combination of type I and type IV, all hysteresis loops resemble the H4-type. The density functional and cluster model methods have been invoked to select the phosphorus grafting model, and it was found that the phosphorus grafting model were more probable in the form of the terminal oxygen coordinating with aluminum.展开更多
The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored ...The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored relative to the molecular NH3 adsorption by decreasing the total energy of 0.95 eV. The adsorption geometries of the molecular and dis- sociative NH3 are given in detail, among which the molecular NH3 bonds to the surface Ga with its lone electronic pair, and the N atom of NH2 adspecies forms the four-fold coordinated N by bridging two surface Ga atoms.展开更多
基金the National Natural Science Foundation of China(No.51504257)the State Key Research Development Program of China(No.2016YFC0600704)+1 种基金the Fund of Yueqi Outstanding Scholars(No.2018B051616)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-FW201604).
文摘As a widely used measurement technique in rock mechanics,spatial correlation modeling of acoustic emission(AE)scattering signals is attracting increasing focus for describing mechanical behavior quantitatively.Unlike the statistical description of the spatial distribution of randomly generated AE signals,spatial correlation modeling is based mainly on short-range correlation considering the interrelationship of adjacent signals.As a new idea from percolation models,the covering strategy is used to build the most representative cube cluster,which corresponds to the critical scale at peak stress.Its modeling process of critical cube cluster depends strongly on the full connection of the main fracture network,and the corresponding cube for coverage is termed the critical cube.The criticality pertains to not only the transition of local-to-whole connection of the fracture network but also the increasing-to-decreasing transition of the deviatoric stress with an obvious stress drop in the brittle failure of granite.Determining a reasonable critical cube guarantees the best observation scale for investigating the failure process.Besides,the topological connection induces the geometric criticality of three descriptors,namely anisotropy,pore fraction,and specific surface area,which are evaluated separately and effectively.The results show that cluster modeling based on the critical cube is effective and has criticality in both topology and geometry,as well as the triaxial behavior.Furthermore,the critical cube length presents a high confidence probability of being correlated to the mineral particle size.Besides,its pore fraction of cube cluster is influenced strongly by the critical cube length and confining pressure.
基金supported by the Special Funds for Major State Basic Research Project of China(973)(Nos.2007CB925004 and 2008CB717802)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N35)+2 种基金National Natural Science Foundation of China(No.11005124)the China Postdoctoral Science Foundation Funded Project(No.20100470863)Director Grants of CASHIPS.Part of the calculations were performed in the Center for Computational Science of CASHIPS
文摘The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.
文摘The density functional theory and the cluster model methods have been employed to investigate the interactions between thiophene and the HZSM-5 zeolites. The molecular complexes formed by the adsorption of thiophene on silanol H3SiOH with two coordination forms, and the model Brrnsted acid sites of zeolite cluster H3Si(OH)AI(OH)2SiH3 upon the interaction with thiophene have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31G basis level for hydrogen atoms and 6-31+G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The calculated results showed that the nature of interactions leading to the formation of the zeolite cluster-thiophene and silanol-thiophene complexes was associated with the van der Waals force confirmed by a slight change of geometric structures and properties. Thiophene is adsorbed on bridging hydroxyl group prior to silanol OH group judging from the magnitude of adsorption heat. The cluster model calculation reproducing the experimental prediction to form the experimental adsorption spectra of thiophene in HZSM-5 zeolite has illustrated the validity of the proposed adsorption models.
基金supported by the National Key R&D Program of China(Nos.2023YFA1606701 and 2022YFA1602402)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)the 111 Project。
文摘To investigate the structural configuration of^(6)He and^(6)Be in a three-cluster system and to highlight dinucleon correlations,we performed a two-cluster overlap amplitude(TCOA)calculation,which is an extension of the RWA formalism.The total wave functions were obtained using the generator coordinate method with microscopic cluster wave functions.Based on these wave functions,we calculated the overlap amplitudes to extract the relative motion and spatial correlations between clusters.The computed energy spectra showed reasonable agreement with the experimental data,emphasizing the effectiveness of the present framework for investigating dinucleon correlations in light nuclei.Our results revealed the presence of both dinucleon-like and cigar-like configurations in the ground states of^(6)He and^(6)Be,indicating a coexistence of compact and extended cluster structures.Furthermore,the 2_(1)^(+)state of^(6)He revealed a pronounced dineutron structure,with strong spatial correlations between the two valence neutrons.We also performed calculations for the higher-lying 2_(1)^(+)state,which showed a more spatially extended structure and provided potential references for future experimental investigations.These findings demonstrated that the TCOA method served as a powerful tool to explore cluster dynamics and dinucleon features in light,weakly bound nuclear systems.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
文摘Symplectic symmetry approach to clustering(SSAC)in atomic nuclei,recently proposed,is modified and further developed in more detail.It is firstly applied to the light two-cluster^(20)Ne+αsystem of^(24)Mg,the latter exhibiting well developed low-energy K^(π)=0_(1)^(+),k^(π)=2_(1)^(+) and π^(π)=0_(1)^(-) rotational bands in its spectrum.A simple algebraic Hamiltonian,consisting of dynamical symmetry,residual and vertical mixing parts is used to describe these three lowest rotational bands of positive and negative parity in^(24)Mg.A good description of the excitation energies is obtained by considering only the SU(3)cluster states restricted to the stretched many-particle Hilbert subspace,built on the leading Pauli allowed SU(3)multiplet for the positive-and negative-parity states,respectively.The coupling to the higher cluster-model configurations allows us to describe the known low-lying experimentally observed B(E2)transition probabilities within and between the cluster states of the three bands under consideration without the use of an effective charge.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042 and 12147101)。
文摘As a cluster overlap amplitude,the reduced-width amplitude is an important physical quantity for analyzing clustering in the nucleus depending on specified channels and has been calculated and widely applied in nuclear cluster physics.In this review,we briefly revisit the theoretical framework for calculating the reduced-width amplitude,as well as the outlines of cluster models to obtain microscopic or semi-microscopic cluster wave functions.We also introduce the recent progress related to cluster overlap amplitudes,including the implementation of cross-section estimation and extension to three-body clustering analysis.Comprehensive examples are provided to demonstrate the application of the reduced-width amplitude in analyzing clustering structures.
基金Supported by Science and Technology Project of State Grid Corporation of China(5108-202218280A-2-396-XG).
文摘Regard to the real-time dynamic digital twin modelling problem of a new-type distribution network that includes distributed resources such as distributed photovoltaic,energy storage,charging pile,and electric vehicle,a new-type distribution network digital twin topology modeling method based on Common Information Model(CIM)specifications and spectral clustering is proposed.Firstly,according to the specifications of the CIM standard,the digital twin topology models of distributed resources are extended and established.Secondly,based on the digital twin topology models of distributed resources,a digital twin aggregation modelling method for new-type distribution network is proposed based on spectral clustering.Furthermore,an online linked update strategy for the digital twin model of new-type distribution network that integrates real-time topology states is proposed.Finally,a case study is conducted on a distribution network in a certain demonstration area in China,and the results verify the practicability and effectiveness of the method proposed in this paper.This lays the foundation for the application of electrical network twin analysis,such as power flow calculation,optimal power flow,economic dispatch,and safety check,in a new-type distribution network that includes diversified distributed resources.
基金This work was financially supported by the National Natural Science Foundation of China (No.50406025).
文摘A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.
基金supported by the National Natural Science Foundation of Jiangsu Province of China for Distinguished Young Scholars (Grant BK20150005)the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)
文摘In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the specimen when the temperature is below 300?C, and have partial coalescence when the temperature is up to 450?C, then form macro-cracks when the temperature is above 600?C. There is more inter-granular cracking than intra-granular cracking, and their ratio increases with increasing temperature.The micro-cracks are almost constant when the temperature decreases from 900?C to room temperature, except for quartz α–β phase transition temperature(573?C). The fracture evolution process is obviously affected by these cracks, especially at 600–900?C. Elevated temperature leads to easily developed displacement between the grains, and the capacity to store strain energy becomes weaker, corresponding to the plasticity of granite after heat treatment.
基金This study was sponsored by the National Natural Science Foundation of China(No.51504257)the State Key Research Development Program of China(No.2016YFC0600704)+1 种基金the Fundamental Research Funds for the Central Universities(Yueqi Outstanding Scholars)(No.2018B051616,2021JCCXLJ01,2021YJSLJ06)the Open Fund of the State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-FW201604).
文摘To extract more in-depth information of acoustic emission(AE)signal-cloud in rock failure under triaxial compression,the spatial correlation of scattering AE events in a granite sample is effectively described by the cube-cluster model.First,the complete connection of the fracture network is regarded as a critical state.Then,according to the Hoshen-Kopelman(HK)algorithm,the real-time estimation of fracture con-nection is effectively made and a dichotomy between cube size and pore fraction is suggested to solve such a challenge of the one-to-one match between complete connection and cluster size.After,the 3D cube clusters are decomposed into orthogonal layer clusters,which are then transformed into the ellip-soid models.Correspondingly,the anisotropy evolution of fracture network could be visualized by three orthogonal ellipsoids and quantitatively described by aspect ratio.Besides,the other three quantities of centroid axis length,porosity,and fracture angle are analyzed to evaluate the evolution of cube cluster.The result shows the sample dilatancy is strongly correlated to four quantities of aspect ratio,centroid axis length,and porosity as well as fracture angle.Besides,the cube cluster model shows a potential pos-sibility to predict the evolution of fracture angle.So,the cube cluster model provides an in-depth view of spatial correlation to describe the AE signal-cloud.
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Frontier Science Program of Shell Global Solutions International B.V.(PT32281)+1 种基金the Ministry of Science and Technology of China(2016YFA0202802)the Shanghai Municipal Science and Technology Commission(14ZR1444600)~~
文摘Density‐functional theory calculations were carried out to study the strontium(Sr)‐doping effect on methane activation over a lanthanum‐oxide(La2O3)catalyst for the oxidative coupling of methane(OCM)using the cluster model.Eight Sr‐doped La2O3cluster models were built from pure La2O3clusters that were used previously to model the La2O3catalyst.These form two distinct categories,namely,those without a radical character(LaSrO2(OH),La2SrO4,La3SrO5(OH),and La5SrO8(OH))and those with a radical character(LaSrO3,La2SrO4(OH),La3SrO6,and La5SrO9).The potential‐energy surface for CH4activation to form a CH3radical at different Sr-O and La-O pair sites on these Sr‐doped La2O3clusters was calculated to study the Sr‐doping effect on the OCM catalytic activity.CH4physisorption and chemisorption energies,and activation barriers,and CH3desorption energies were predicted.Compared with the pure La2O3clusters,in general,the Sr‐doped La2O3clusters are thermodynamically and kinetically more reactive with CH4.For the Sr‐doped La2O3clusters without the radical character,the Sr-O pair site is more reactive with CH4than the La-O pair site,although a direct release of the CH3radical is also highly endothermic as in the case of the pure La2O3clusters.In contrast,for the Sr‐doped La2O3clusters with a radical character,the activation of CH4at the oxygen radical site and the release of the CH3radical are much easier.Thus,our calculations suggest that the Sr dopant prompts the OCM catalytic activity of the La2O3catalyst by providing a highly active oxygen‐radical site and by strengthening the basicity of the M-O pair site,which leads to lower CH4activation energies and lower CH3desorption energies.
基金supported by the National Natural Science Foundation of China(Nos.51677171,51637009,51577166 and 51827810)the National Key R&D Program of China(No.2018YFB0606000)+2 种基金the China Scholarship Council(No.201708330502)the Fund of Shuohuang Railway Development Limited Liability Company(No.SHTL-2020-13)the Fund of State Key Laboratory of Industrial Control Technology(No.ICT2022B29),China。
文摘Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674207)
文摘In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.
文摘The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.
基金National Natural Science Foundation of China(No.62101219)Natural Science Foundation of Jiangsu Province(Nos.BK20201026,BK20210921)+1 种基金Science Foundation of Jiangsu Normal University(No.19XSRX006)Open Research Fund of Jiangsu Key Laboratory of Resources and Environmental Information Engineering(No.JS202107)。
文摘With the rapid development of Unmanned Aerial Vehicle(UAV)technology,change detection methods based on UAV images have been extensively studied.However,the imaging of UAV sensors is susceptible to environmental interference,which leads to great differences of same object between UAV images.Overcoming the discrepancy difference between UAV images is crucial to improving the accuracy of change detection.To address this issue,a novel unsupervised change detection method based on structural consistency and the Generalized Fuzzy Local Information C-means Clustering Model(GFLICM)was proposed in this study.Within this method,the establishment of a graph-based structural consistency measure allowed for the detection of change information by comparing structure similarity between UAV images.The local variation coefficient was introduced and a new fuzzy factor was reconstructed,after which the GFLICM algorithm was used to analyze difference images.Finally,change detection results were analyzed qualitatively and quantitatively.To measure the feasibility and robustness of the proposed method,experiments were conducted using two data sets from the cities of Yangzhou and Nanjing.The experimental results show that the proposed method can improve the overall accuracy of change detection and reduce the false alarm rate when compared with other state-of-the-art change detection methods.
基金Supported by the National Science Foundation of China under Grant Nos 90503011, 10775072, 10375030 and 10505006.
文摘The symmetric spin-orbit interactions of one-gluon-exchange and confinement are included in the nucleon-nucleon phase shift calculation in the framework of quark delocalization eolour screening model. The spin-orbit interaction has little influence on D wave phase shift. For the triplet P waves, aPT is in good agreement with the experimental data and 3pLs is attractive but not strong enough, whereas 3 Pc is too strongly repulsive. Our results indicate that the symmetric spin-orbit interaction of one-gluon-exchange and confinement potential cannot give a good description of the triplet P wave phase shifts. More sophisticated considerations, the delocalization depending on the relative orientation between two cluster, might be needed to improve the description of P-wave NN interaction.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775061,10505016,10575119,and 10805016the CAS Knowledge Innovation Project under Grant No.KJCX-SYW-N02the Major State Basic Research Developing Program of China under Grant No.2007CB815004
文摘The properties of nuclei belonging to the α-decay chain of superheavy element ^295118 have been studied in the framework of axially deformed relativistic mean field (RMF) theory with the parameter set of NL-Z2 in the blocked BCS approximation. Some ground state properties such as binding energies, deformations, and α-decay energies Qα have been obtained and agree well with those from finite-range droplet model (FRDM). The single-particle spectra of nuclei in ^295118 α-decay chain show that the shell gaps present obviously nucleon number dependence. The root-mean-square (rms) radii of proton, neutron and matter distributions change slowly from ^283112 to ^295118 but dramatically from ^279110 to ^283112, which may be due to the subshell closure at Z = 110 in ^279110. The α-decay half-lives in 295118 decay chain are evaluated by employing the cluster model and the generalized liquid drop model (GLDM), and the overall agreement is found when they are compared with the known experimental data. The α-decay lifetimes obtained from the cluster model are slightly larger than those of GLDM ones. Finally, we predict the α-decay half-lives of Z=118, 116, 114, 112 isotopes using the cluster model and GLDM, which also indicate these two models can corroborate each other in studies on superheavy nuclei. The results from GLDM are always lower than those obtained from the cluster model.
文摘The modification of HZSM-5 zeolite with phosphorus and steam has been studied. Results show that 1% phosphorus and steam modified HZSM-5 has the highest catalytic activity for n-heptane. Physicochemical and catalytic properties of 1% phosphorus and steam modified HZSM-5 zeolites have been investigated. The X-ray diffraction (XRD) results exhibit that there is considerable variation in the relative intensity of the individual diffraction peaks. The acidity of the samples decreases with an increase in the steaming temperature, which is determined by the IR of adsorbed pyridine and temperature programmed desorption (TPD) of ammonia. The oxidation state of phosphorus shown by XPS is +5, and a model for surface structure modification is proposed. The nitrogen adsorption isotherm for all samples is a combination of type I and type IV, all hysteresis loops resemble the H4-type. The density functional and cluster model methods have been invoked to select the phosphorus grafting model, and it was found that the phosphorus grafting model were more probable in the form of the terminal oxygen coordinating with aluminum.
基金Supported by the National Natural Science Foundation of China (202730313)
文摘The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored relative to the molecular NH3 adsorption by decreasing the total energy of 0.95 eV. The adsorption geometries of the molecular and dis- sociative NH3 are given in detail, among which the molecular NH3 bonds to the surface Ga with its lone electronic pair, and the N atom of NH2 adspecies forms the four-fold coordinated N by bridging two surface Ga atoms.