As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas...As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.展开更多
Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation syst...Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation system with clustering robust regression model and Stata 13. 0 software. Total forest pest control efficiency in China was determined according to the computing result of entropy method. Suggestions such as improving forest pest control efficiency,increasing service efficiency and input amount of forest pest control input funds were put forward. It will provide empirical basis for target management evaluation of forest pest control work and accountability system.展开更多
To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is des...To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is designed to assess the information spreading capability of an agent. Besides, a competition resolution mechanism is proposed to tackle the competition problem in large-scale multiagent systems. Thus, the proposed algorithm can balance the load, adjust the system network locally and dynamically, reduce system energy consumption. Finally, simulations are presented to demonstrate the superiority of the proposed algorithm.展开更多
Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT...Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.展开更多
Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, charact...Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, characterized by multi-hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. In multi-hop sensor networks, information obtained by the monitoring nodes need to be routed to the sinks, the energy consumption rate per unit information transmission depends on the choice of the next hop node. In an energy-aware routing approach, most proposed algorithms aim at minimizing the total energy consumption or maximizing network lifetime. In this paper, we propose a novel energy aware hierarchical cluster-based(NEAHC) routing protocol with two goals: minimizing the total energy consumption and ensuring fairness of energy consumption between nodes. We model the relay node choosing problem as a nonlinear programming problem and use the property of convex function to find the optimal solution. We also evaluate the proposed algorithm via simulations at the end of this paper.展开更多
Using direct numerical simulation, we investigate the coagulation behavior of non-Brownian colloidal particles as exemplified by Al2O3 particles. This yields the so-called capture efficiency, for which we give an anal...Using direct numerical simulation, we investigate the coagulation behavior of non-Brownian colloidal particles as exemplified by Al2O3 particles. This yields the so-called capture efficiency, for which we give an analytical expression, as well as other time-dependent variables such as the cluster growth rate. Instead of neglecting or strongly approximating the hydrodynamic interactions between particles, we include hydrodynamic and non-hydrodynamic interactions in a Stokesian dynamics approach and a comprehensive modeling of the interparticle forces. The resulting parallelized simulation framework enables us to investigate the dynamics of polydisperse particle systems composed of several hundred particles at the same high level of modeling we used for a close investigation of the coagulation behavior of two unequal particles in shear flow. Appropriate cluster detection yields all the information about large destabilizing systems, which is needed for models used in flow-sheet simulations. After non-dimensionalization, the results can be generalized and applied to other systems tending to secondary coagulation展开更多
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2024-00337489Development of Data Drift Management Technology to Overcome Performance Degradation of AI Analysis Models).
文摘As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios.
基金Supported by Analysis of Forest Pest Cost Responsibility Investigation System(2017-R04)Protection and Development:Coordination Mechanism Research from the Perspective of Community(71373024)
文摘Three indexes including forest pest occurrence area,control area and input fund of 31 provinces from 2003 to 2014 were selected from Forestry Statistical Yearbook,to establish dynamic interaction index evaluation system with clustering robust regression model and Stata 13. 0 software. Total forest pest control efficiency in China was determined according to the computing result of entropy method. Suggestions such as improving forest pest control efficiency,increasing service efficiency and input amount of forest pest control input funds were put forward. It will provide empirical basis for target management evaluation of forest pest control work and accountability system.
基金supported by Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011the National Natural Science Foundation of China under Grant Nos.61573062,61621063,and 61673058+3 种基金Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208Beijing Education Committee Cooperation Building Foundation Project under Grant No.2017CX02005Beijing Advanced Innovation Center for Intelligent Robots and Systems(Beijing Institute of Technology)Key Laboratory of Biomimetic Robots and Systems(Beijing Institute of Technology),Ministry of Education,Beijing,China
文摘To improve the energy efficiency and load-balance in large-scale multi-agent systems, a large-scale distributed cluster algorithm is proposed. At first, a parameter describing the spatial distribution of agents is designed to assess the information spreading capability of an agent. Besides, a competition resolution mechanism is proposed to tackle the competition problem in large-scale multiagent systems. Thus, the proposed algorithm can balance the load, adjust the system network locally and dynamically, reduce system energy consumption. Finally, simulations are presented to demonstrate the superiority of the proposed algorithm.
文摘Wireless Sensor Networks(WSNs) have many applications, such as climate monitoring systems, fire detection, smart homes, and smart cities. It is expected that WSNs will be integrated into the Internet of Things(IoT)and participate in various tasks. WSNs play an important role monitoring and reporting environment information and collecting surrounding context. In this paper we consider a WSN deployed for an application such as environment monitoring, and a mobile sink which acts as the gateway between the Internet and the WSN. Data gathering is a challenging problem in WSNs and in the IoT because the information has to be available quickly and effectively without delays and redundancies. In this paper we propose several distributed algorithms for composite event detection and reporting to a mobile sink. Once data is collected by the sink, it can be shared using the IoT infrastructure. We analyze the performance of our algorithms using WSNet simulator, which is specially designed for event-based WSNs. We measure various metrics such as average residual energy, percentage of composite events processed successfully at the sink, and the average number of hops to reach the sink.
基金supported by the National Youth Science Fund Project(61501052,61501047)the Fundamental Research Funds for the Central Universities of China(2015RC05)
文摘Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, characterized by multi-hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. In multi-hop sensor networks, information obtained by the monitoring nodes need to be routed to the sinks, the energy consumption rate per unit information transmission depends on the choice of the next hop node. In an energy-aware routing approach, most proposed algorithms aim at minimizing the total energy consumption or maximizing network lifetime. In this paper, we propose a novel energy aware hierarchical cluster-based(NEAHC) routing protocol with two goals: minimizing the total energy consumption and ensuring fairness of energy consumption between nodes. We model the relay node choosing problem as a nonlinear programming problem and use the property of convex function to find the optimal solution. We also evaluate the proposed algorithm via simulations at the end of this paper.
文摘Using direct numerical simulation, we investigate the coagulation behavior of non-Brownian colloidal particles as exemplified by Al2O3 particles. This yields the so-called capture efficiency, for which we give an analytical expression, as well as other time-dependent variables such as the cluster growth rate. Instead of neglecting or strongly approximating the hydrodynamic interactions between particles, we include hydrodynamic and non-hydrodynamic interactions in a Stokesian dynamics approach and a comprehensive modeling of the interparticle forces. The resulting parallelized simulation framework enables us to investigate the dynamics of polydisperse particle systems composed of several hundred particles at the same high level of modeling we used for a close investigation of the coagulation behavior of two unequal particles in shear flow. Appropriate cluster detection yields all the information about large destabilizing systems, which is needed for models used in flow-sheet simulations. After non-dimensionalization, the results can be generalized and applied to other systems tending to secondary coagulation