期刊文献+
共找到13,954篇文章
< 1 2 250 >
每页显示 20 50 100
A Clustering Model Based on Density Peak Clustering and the Sparrow Search Algorithm for VANETs
1
作者 Chaoliang Wang Qi Fu Zhaohui Li 《Computers, Materials & Continua》 2025年第8期3707-3729,共23页
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead... Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios. 展开更多
关键词 VANETs cluster density peak clustering sparrow search algorithm
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
2
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Phasmatodea Population Evolution Algorithm Based on Spiral Mechanism and Its Application to Data Clustering
3
作者 Jeng-Shyang Pan Mengfei Zhang +2 位作者 Shu-Chuan Chu Xingsi Xue Václav Snášel 《Computers, Materials & Continua》 2025年第4期475-496,共22页
Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their sim... Data clustering is an essential technique for analyzing complex datasets and continues to be a central research topic in data analysis.Traditional clustering algorithms,such as K-means,are widely used due to their simplicity and efficiency.This paper proposes a novel Spiral Mechanism-Optimized Phasmatodea Population Evolution Algorithm(SPPE)to improve clustering performance.The SPPE algorithm introduces several enhancements to the standard Phasmatodea Population Evolution(PPE)algorithm.Firstly,a Variable Neighborhood Search(VNS)factor is incorporated to strengthen the local search capability and foster population diversity.Secondly,a position update model,incorporating a spiral mechanism,is designed to improve the algorithm’s global exploration and convergence speed.Finally,a dynamic balancing factor,guided by fitness values,adjusts the search process to balance exploration and exploitation effectively.The performance of SPPE is first validated on CEC2013 benchmark functions,where it demonstrates excellent convergence speed and superior optimization results compared to several state-of-the-art metaheuristic algorithms.To further verify its practical applicability,SPPE is combined with the K-means algorithm for data clustering and tested on seven datasets.Experimental results show that SPPE-K-means improves clustering accuracy,reduces dependency on initialization,and outperforms other clustering approaches.This study highlights SPPE’s robustness and efficiency in solving both optimization and clustering challenges,making it a promising tool for complex data analysis tasks. 展开更多
关键词 Phasmatodea population evolution algorithm data clustering meta-heuristic algorithm
在线阅读 下载PDF
Optimized Cardiovascular Disease Prediction Using Clustered Butterfly Algorithm
4
作者 Kamepalli S.L.Prasanna Vijaya J +2 位作者 Parvathaneni Naga Srinivasu Babar Shah Farman Ali 《Computers, Materials & Continua》 2025年第10期1603-1630,共28页
Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing h... Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance. 展开更多
关键词 Cardiovascular disease prediction healthcare management system clustering RoughK-means classification butterfly optimization algorithm
在线阅读 下载PDF
Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm
5
作者 Seongsoo Cho Yeonwoo Lee Cheolhee Yoon 《Computer Modeling in Engineering & Sciences》 2025年第6期3769-3793,共25页
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas... As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios. 展开更多
关键词 Grasshopper optimization algorithm VANET intelligent transportation systems traffic congestion clustering efficiency
在线阅读 下载PDF
The Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm:A new earthquake clustering method and its application to the Sichuan–Yunnan Block
6
作者 JieYi Hou Feng Hu +1 位作者 Yang Zang LingYuan Meng 《Earth and Planetary Physics》 2025年第4期828-841,共14页
We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm el... We propose a robust earthquake clustering method:the Bayesian Gaussian mixture model with nearest-neighbor distance(BGMM-NND)algorithm.Unlike the conventional nearest neighbor distance method,the BGMM-NND algorithm eliminates the need for hyperparameter tuning or reliance on fixed thresholds,offering enhanced flexibility for clustering across varied seismic scales.By integrating cumulative probability and BGMM with principal component analysis(PCA),the BGMM-NND algorithm effectively distinguishes between background and triggered earthquakes while maintaining the magnitude component and resolving the issue of excessively large spatial cluster domains.We apply the BGMM-NND algorithm to the Sichuan–Yunnan seismic catalog from 1971 to 2024,revealing notable variations in earthquake frequency,triggering characteristics,and recurrence patterns across different fault zones.Distinct clustering and triggering behaviors are identified along different segments of the Longmenshan Fault.Multiple seismic modes,namely,the short-distance mode,the medium-distance mode,the repeating-like mode,the uniform background mode,and the Wenchuan mode,are uncovered.The algorithm's flexibility and robust performance in earthquake clustering makes it a valuable tool for exploring seismicity characteristics,offering new insights into earthquake clustering and the spatiotemporal patterns of seismic activity. 展开更多
关键词 earthquake clustering BGMM-NND algorithm sichuan–Yunnan Block seismic modes
在线阅读 下载PDF
An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks
7
作者 Peng Zhou Wei Chen Bingyu Cao 《Computers, Materials & Continua》 2025年第9期5337-5360,共24页
Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as ... Wireless Sensor Networks(WSNs),as a crucial component of the Internet of Things(IoT),are widely used in environmental monitoring,industrial control,and security surveillance.However,WSNs still face challenges such as inaccurate node clustering,low energy efficiency,and shortened network lifespan in practical deployments,which significantly limit their large-scale application.To address these issues,this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm(AC-ACO),aiming to optimize the energy utilization and system lifespan of WSNs.AC-ACO combines the path-planning capability of Ant Colony Optimization(ACO)with the dynamic characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and adaptability.By dynamically adjusting the pheromone evaporation factor and heuristic weights,efficient node clustering is achieved.Additionally,a chaotic mapping initialization strategy is employed to enhance population diversity and avoid premature convergence.To validate the algorithm’s performance,this paper compares AC-ACO with clustering methods such as Low-Energy Adaptive Clustering Hierarchy(LEACH),ACO,Particle Swarm Optimization(PSO),and Genetic Algorithm(GA).Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key metrics such as energy consumption optimization,network lifetime extension,and communication delay reduction,providing an efficient solution for improving energy efficiency and ensuring long-term stable operation of wireless sensor networks. 展开更多
关键词 Internet of Things wireless sensor networks ant colony optimization clustering algorithm energy efficiency
在线阅读 下载PDF
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
8
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3D point clouds Pointwise clustering(PWC)algorithm Modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
9
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
A systematic data-driven modelling framework for nonlinear distillation processes incorporating data intervals clustering and new integrated learning algorithm
10
作者 Zhe Wang Renchu He Jian Long 《Chinese Journal of Chemical Engineering》 2025年第5期182-199,共18页
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie... The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation. 展开更多
关键词 Integrated learning algorithm Data intervals clustering Feature selection Application of artificial intelligence in distillation industry Data-driven modelling
在线阅读 下载PDF
Clustering-based recommendation method with enhanced grasshopper optimisation algorithm
11
作者 Zihao Zhao Yingchun Xia +7 位作者 Wenjun Xu Hui Yu Shuai Yang Cheng Chen Xiaohui Yuan Xiaobo Zhou Qingyong Wang Lichuan Gu 《CAAI Transactions on Intelligence Technology》 2025年第2期494-509,共16页
In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face sig... In the era of big data,personalised recommendation systems are essential for enhancing user engagement and driving business growth.However,traditional recommendation algorithms,such as collaborative filtering,face significant challenges due to data sparsity,algorithm scalability,and the difficulty of adapting to dynamic user preferences.These limitations hinder the ability of systems to provide highly accurate and personalised recommendations.To address these challenges,this paper proposes a clustering-based recommendation method that integrates an enhanced Grasshopper Optimisation Algorithm(GOA),termed LCGOA,to improve the accuracy and efficiency of recommendation systems by optimising cluster centroids in a dynamic environment.By combining the K-means algorithm with the enhanced GOA,which incorporates a Lévy flight mechanism and multi-strategy co-evolution,our method overcomes the centroid sensitivity issue,a key limitation in traditional clustering techniques.Experimental results across multiple datasets show that the proposed LCGOA-based method significantly outperforms conventional recommendation algorithms in terms of recommendation accuracy,offering more relevant content to users and driving greater customer satisfaction and business growth. 展开更多
关键词 collaborative recommendation Grasshopper Optimization algorithm(GOA) K‐means clustering Lévy flight
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
12
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy UsV cluster Jamming formation optimization Improved PsO algorithm
在线阅读 下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
13
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol clusterING falcon optimization algorithm ROUTING
在线阅读 下载PDF
Characterization and clustering of rock discontinuity sets:A review
14
作者 Changle Pu Jiewei Zhan +1 位作者 Wen Zhang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1240-1262,共23页
The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under... The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets. 展开更多
关键词 Discontinuity clustering clustering algorithms Discontinuity characterization Orientation analysis Rock mass
在线阅读 下载PDF
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
15
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 Multi-agent path planning Asynchronous genetic algorithm Equal-size clustering Genetic algorithm
在线阅读 下载PDF
Multifactor diagnostic model of converter energy consumption based on K-means algorithm and its application
16
作者 Fei-xiang Dai Guang Chen +3 位作者 Xiang-jun Bao Gong-guo Liu Lu Zhang Xiao-jing Yang 《Journal of Iron and Steel Research International》 2025年第8期2359-2369,共11页
To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is pla... To address the challenge of identifying the primary causes of energy consumption fluctuations and accurately assessing the influence of various factors in the converter unit of an iron and steel plant,the focus is placed on the critical components of material and heat balance.Through a thorough analysis of the interactions between various components and energy consumptions,six pivotal factors have been identified—raw material composition,steel type,steel temperature,slag temperature,recycling practices,and operational parameters.Utilizing a framework based on an equivalent energy consumption model,an integrated intelligent diagnostic model has been developed that encapsulates these factors,providing a comprehensive assessment tool for converter energy consumption.Employing the K-means clustering algorithm,historical operational data from the converter have been meticulously analyzed to determine baseline values for essential variables such as energy consumption and recovery rates.Building upon this data-driven foundation,an innovative online system for the intelligent diagnosis of converter energy consumption has been crafted and implemented,enhancing the precision and efficiency of energy management.Upon implementation with energy consumption data at a steel plant in 2023,the diagnostic analysis performed by the system exposed significant variations in energy usage across different converter units.The analysis revealed that the most significant factor influencing the variation in energy consumption for both furnaces was the steel grade,with contributions of−0.550 and 0.379. 展开更多
关键词 Equivalent energy consumption model Intelligent diagnostic model K-means clustering algorithm Online system Energy management
原文传递
Fast Mixture Distribution Optimization for Rain-Flow Matrix of a Steel Arch Bridge by REBMIX Algorithm
17
作者 Yuliang He Weihong Lou +1 位作者 Da Hang Youhua Su 《Structural Durability & Health Monitoring》 2025年第4期887-902,共16页
The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stre... The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications. 展开更多
关键词 steel bridge stress spectrum finite mixture distribution REBMIX algorithm Akaike’s information criterion
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
18
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 clusterING energy stability network lifetime seagull optimization algorithm(sEOA) whale optimization algorithm(WOA) wireless sensor networks(WsNs)
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
19
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization algorithm(AGOA) cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless sensor Networks(WsNs)
在线阅读 下载PDF
A Multi-Objective Clustered Input Oriented Salp Swarm Algorithm in Cloud Computing
20
作者 Juliet A.Murali Brindha T. 《Computers, Materials & Continua》 SCIE EI 2024年第12期4659-4690,共32页
Infrastructure as a Service(IaaS)in cloud computing enables flexible resource distribution over the Internet,but achieving optimal scheduling remains a challenge.Effective resource allocation in cloud-based environmen... Infrastructure as a Service(IaaS)in cloud computing enables flexible resource distribution over the Internet,but achieving optimal scheduling remains a challenge.Effective resource allocation in cloud-based environments,particularly within the IaaS model,poses persistent challenges.Existing methods often struggle with slow opti-mization,imbalanced workload distribution,and inefficient use of available assets.These limitations result in longer processing times,increased operational expenses,and inadequate resource deployment,particularly under fluctuating demands.To overcome these issues,a novel Clustered Input-Oriented Salp Swarm Algorithm(CIOSSA)is introduced.This approach combines two distinct strategies:Task Splitting Agglomerative Clustering(TSAC)with an Input Oriented Salp Swarm Algorithm(IOSSA),which prioritizes tasks based on urgency,and a refined multi-leader model that accelerates optimization processes,enhancing both speed and accuracy.By continuously assessing system capacity before task distribution,the model ensures that assets are deployed effectively and costs are controlled.The dual-leader technique expands the potential solution space,leading to substantial gains in processing speed,cost-effectiveness,asset efficiency,and system throughput,as demonstrated by comprehensive tests.As a result,the suggested model performs better than existing approaches in terms of makespan,resource utilisation,throughput,and convergence speed,demonstrating that CIOSSA is scalable,reliable,and appropriate for the dynamic settings found in cloud computing. 展开更多
关键词 Cloud computing clustering resource allocation scheduling swam algorithms optimization common with in the subject discipline
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部