A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also fa...A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).展开更多
Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. Al...Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.展开更多
在机会网络中,网络拓扑结构动态变化,节点之间间歇性连接,这种间歇性连接是由于缺乏网络基础设施和终端设备随机移动所造成的,机会网络的这些特性使得路由算法的设计成为一项具有挑战性的研究课题.本文提出一种基于无监督学习模型X-Mean...在机会网络中,网络拓扑结构动态变化,节点之间间歇性连接,这种间歇性连接是由于缺乏网络基础设施和终端设备随机移动所造成的,机会网络的这些特性使得路由算法的设计成为一项具有挑战性的研究课题.本文提出一种基于无监督学习模型X-Means的机会网络路由算法XMROP(Opportunistic network routing algorithm based on unsupervised learning model X-Means),致力于利用机器学习模型来做出路由决策.该路由算法提出新的聚类模型应用模式,解决现阶段机会网络中应用聚类模型所存在的问题,综合考虑连接强度、节点活跃度、缓存等属性特征,定义新的节点中心度度量来衡量节点活跃程度,使用X-Means聚类模型对样本数据集进行训练,以适应机会网络拓扑结构的动态变化,提升路由算法性能.仿真实验结果表明,与KROP,DBSCAN-R,Prophet路由算法相比,XMROP具有更好的性能,从而验证了研究方案的有效性.展开更多
基金Supported by the National Natural Science Foundation of China(61103157)
文摘A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
文摘Today, vehicular ad-hoc network (VANET) is a hot research topic due to its many applications like collision avoidance, congestion road notification, parking lot availability, road-side business advertisements, etc. All these applications have hard delay constraints i.e. the messages should reach the target location within certain time limits. So, there must be efficient routing in VANET which meets these delay constraints. In this paper, two techniques are proposed to minimize the data traffic and delay in VANET. Firstly, a context based clustering is proposed which takes into consideration various parameters in cluster formation-location of vehicle, direction of vehicle, velocity of vehicle, interest list of vehicle [1] and destination of vehicle. Secondly, a destination based routing protocol is proposed for these context based clusters for efficient inter-cluster communication.
文摘在机会网络中,网络拓扑结构动态变化,节点之间间歇性连接,这种间歇性连接是由于缺乏网络基础设施和终端设备随机移动所造成的,机会网络的这些特性使得路由算法的设计成为一项具有挑战性的研究课题.本文提出一种基于无监督学习模型X-Means的机会网络路由算法XMROP(Opportunistic network routing algorithm based on unsupervised learning model X-Means),致力于利用机器学习模型来做出路由决策.该路由算法提出新的聚类模型应用模式,解决现阶段机会网络中应用聚类模型所存在的问题,综合考虑连接强度、节点活跃度、缓存等属性特征,定义新的节点中心度度量来衡量节点活跃程度,使用X-Means聚类模型对样本数据集进行训练,以适应机会网络拓扑结构的动态变化,提升路由算法性能.仿真实验结果表明,与KROP,DBSCAN-R,Prophet路由算法相比,XMROP具有更好的性能,从而验证了研究方案的有效性.