Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared...Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.展开更多
In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it...In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.展开更多
The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The r...The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The results show that there is a large cloud fraction greater than 0.7 over southern China, and the largest cloud fraction appears in southwest China. Besides, a large cloud fraction occurs over the southeast of the Tibetan Plateau. The total and high cloud fractions show notable variations with seasons, while the middle and low cloud fractions vary a little. As for cloud vertical structure, significant differences of the cloud vertical distributions are observed between over land and ocean. Cloud fractions and the height of the maximum cloud fractions decline gradually with the increasing latitude, except for the vertical-latitude profiles over the Tibetan Plateau regions. The longitude-vertical cross sections show similar patterns from the longitude 70° E to 140° E, except the profiles with large cloud fractions over the Tibetan Plateau. From the horizontal distribution patterns and vertical structures of the clouds over East Asia, it is concluded that the huge terrain of the Tibetan Plateau has significant impacts on the cloud formation over the Tibetan Plateau region and the areas to the east. At last, the clouds from the CALIPSO-GOCCP observations are compared to those from the ERA-Interim reanalysis data. The results indicate that the ERA-Interim reanalysis data provide reasonable spatial distribution patterns and the vertical structures in terms of the total cloud fraction over East Asia. However, the total cloud fraction was underestimated about 20% by the ERA-Interim reanalysis data over most parts of East Asia, especially over the neighboring areas east of the Tibetan Plateau. Additionally, the ERA-interim reanalysis data overestimate the cloud fractions at each level in the vertical direction.展开更多
ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC...ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.展开更多
ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 ...ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 to 4600 m (0°C to -7.6°C), with liquid water content ranging from 0.01 to 0.09 g m-3. In the observed mixed-phase cloud, liquid water content exhibited a bimodal distribution, whereas the maximum ice particle concentration was located in the middle part of the cloud. The liquid and ice particle data showed significant horizontal variability on the scale of a few hundred meters. The cloud droplet concentration varied greatly over the horizontal sampling area. There was an inverse relationship between the cloud droplet concentration and ice particle concentration. A gamma distribution provided the best description of the cloud droplet spectra. The liquid droplet distributions were found to increase in both size and concentration with altitude. It was inferred from the profile of the spectra parameters that the cloud droplet sizes tend to form a quasi-monodisperse distribution. Ice particle spectra in the cloud were fitted well by an exponential distribution. Finally, a remarkable power law relationship was found between the slope (λ) and intercept (No) parameters of the exponential size distribution.展开更多
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spec...Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.展开更多
Based on NCEP 1°×1° reanalysis data, ground encryption houdy precipitation, FY-2E stationary satellite and Doppler radar data, the structural characteristics of precipitation clouds in Hunan Province an...Based on NCEP 1°×1° reanalysis data, ground encryption houdy precipitation, FY-2E stationary satellite and Doppler radar data, the structural characteristics of precipitation clouds in Hunan Province and the effects of airplane precipitation operation were analyzed. The results show that under the effects of low-pressure system and southwest monsoon, Hunan was rich in water vapor, which was beneficial to the maintaining of precipitation clouds. During the process of the artificial precipitation operation over Hunan Province, convection developed vigorously, and precipita- tion was strong in the south of the province; embedded convective clouds were dominant and precipitation was weak in the east of the province. Cloud optical thickness correlated with ground precipitation positively. After catalyzing, echo at high altitudes responded firstly, and the echo intensi- ty increased gradually; the response of low-altitude echo lagged behind that of high-altitude echo. It shows that catalysis could lead to increase of upper precipitation particles in size and quantity. As time goes on, upper precipitation particles descended to low altitudes, so that echo intensity in- creased at low altitudes. It is clearly seen that catalysis could lead to increase of echo intensity and prolong the lifetime of target clouds to improve the area of strong echo zone, showing obvious positive catalytic effect. At the same time, houdy average precipitation in the affected region tended to increase stably and was obviously more than that of the contrast region where hourly average precipitation reduced gradually with time. The changing trend of hourly average precipitation in the affected region correlated positively with the response of radar echo.展开更多
Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June a...Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June and July 1999. The vertical distributions of various cloud particle size, number density, and mass density are retrieved from the observations. Analyses of observations show that ice-phase particles (ice crystals, graupel, snowflakes, and frozen drops) often exist in the cloud of torrential rain associated with the Meiyu front. Among the various particles, ice crystals and graupel are the most numerous, but graupel and snow have the highest mass density. Ice-phase particles coexist with liquid water droplets near the 0°C level. The graupel is similarly distributed with height as the ice crystals. Raindrops below the 0°C level are mainly from melted grauple, snowflakes and frozen drops. They may further grow larger by coalescence with smaller ones as they fall from the cloud base. Numerical simulations using the non-hydrostatic meso-scale model MM5 with the Reisner graupel explicit moisture scheme confirm the main observational results. Rain water at the lower level is mainly generated from the melting of snow and graupel falling from the upper level where snow and graupel are generated and grown from collection with cloud and rain water. Thus the mixed-phase cloud process, in which ice phase coexists and interacts with liquid phase (cloud and rain drops), plays the most important role in the formation and development of heavy convective rainfall in the Meiyu frontal system.展开更多
The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. ...The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. The three instruments are a cryogenic frost-point hygrometer (CFH), a Vaisala RS80 radiosonde (RS80), and a GTS1 radiosonde (GTS1). The accuracy of relative humidity (RH) measurements made by the CFH, GTS1, and RS80 was similar between the surface and 500 hPa (~5.5 km above sea level). However, above 500 hPa, the errors in RH measurements made by the RS80, relative to measurements made by the CFH, are much less than those detected with the GTS1. Three different retrieval methods for determining cloud boundaries from CFH, RS80, and GTS1 measurements were developed and take into account the differences in accuracy among the three instruments. The method for the CFH is based on RH thresholds at all levels, which demands high accuracy. Given that the accuracy of RH measurements decreases at higher altitudes, the cloud detection methods for RS80 and GTS1 are different for different altitude ranges. Below 5 km, the methods for the RS80 and the GTS1 are similar to that of the CFH; above 5 km, the methods for the RS80 and the GTS1 are both developed based on the second-order derivatives of temperature and RH with respect to height, but with different criteria applied. Comparisons of cloud-layer retrievals derived from the three measurements are also made.展开更多
Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation ...Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.展开更多
We carried out observations toward the giant molecular cloud W 37 with the J = 1 - 0 transitions of 12CO, 13CO and C180 using the 13.7 m single-dish telescope at the Delingha station of Purple Mountain Observatory. Ba...We carried out observations toward the giant molecular cloud W 37 with the J = 1 - 0 transitions of 12CO, 13CO and C180 using the 13.7 m single-dish telescope at the Delingha station of Purple Mountain Observatory. Based on these CO lines, we calculated the column densities and cloud masses for molecular clouds with radial velocities around +20 km s-1. The gas mass of W 37, calculated from 13CO emission, is 1.7 × 10^5 M, above the criterion to be considered a giant molecular cloud. The dense ridge of W 37 is a dense filament, which is supercritical in terms of linear mass ratio. Dense clumps found by C180 emission are aligned along the dense ridge at regular intervals of about 2.8 pc, similar to the clump separation caused by large-scale 'sausage instability'. We confirm the identification of the giant molecular filament (GMF) G 18.0-16.8 and find a new giant filament, G 16.5-15.8, located ~ 0.7° to the west of G 18.0-16.8. Both GMFs are not gravitationally bound, as indicated by their low linear mass ratio (- 80 M pc-l). We compared the gas temperature map with the dust temperature map from Herschel images, and found similar structures. The spatial distributions of class I objects and the dense clumps are reminiscent of triggered star formation occurring in the northwestern part of W 37, which is close to NGC 6611.展开更多
The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heatin...The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.展开更多
In this study, the vertical profiles of radar refractive factor(Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using...In this study, the vertical profiles of radar refractive factor(Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using the Sim RAD software, and the contributions of each impact resulting in the bright band were analyzed quantitatively. In the simulation, the parameters inputted into Sim RAD were updated until the output Z profile was nearly consistent with the observation. The input parameters were then deemed to reflect real conditions of the cloud and precipitation. The results showed that a wider(narrower) and brighter(darker) bright band corresponded to a larger(smaller) amount, wider(narrower) vertical distribution, and larger(smaller) mean diameter of melting particles in the melting layer. Besides this,radar reflectivity factors under the wider(narrower) melting layer were larger(smaller). This may be contributed to the adequate growth of larger rain drops in the upper melting layer. Sensitivity experiments of the generation of the radar bright band showed that a drastic increasing of the complex refractive index due to melting led to the largest impact,making the radar reflectivity factor increase by about 15 d BZ. Fragmentation of large particles was the second most important influence, making the value decrease by 10 d BZ. The collision-coalescence between melting particles, volumetric shrinking due to melting, and the falling speed of raindrops made the radar reflectivity factor change by about 3-7d BZ. Shape transformation from spheres to oblate ellipsoids resulted in only a slight increase in the radar reflectivity factors(about 0.2 d BZ), which might be due to the fact that there are few large particles in stratiform cloud.展开更多
On April 27,2016,a striking true-color satellite image acquired by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard National Aeronautics and Space Administration’s(NASA’s)Aqua satellite showed sev...On April 27,2016,a striking true-color satellite image acquired by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard National Aeronautics and Space Administration’s(NASA’s)Aqua satellite showed several groups of very well structured arc cloud patterns(Fig.1),which are associaed with atmospheric gravity waves,aligned in the middle of the Atlantic Ocean between展开更多
The microphysical structure of snow clouds and the growth process of snow crystals were observed by means of instrumented aircraft, weather radar, snow crystal observations etc. in Urumqi region during the winter of 1...The microphysical structure of snow clouds and the growth process of snow crystals were observed by means of instrumented aircraft, weather radar, snow crystal observations etc. in Urumqi region during the winter of 1982. The analysis of three cases show that about 70% of snow mass growth is produced in the lower layer below 2000 m under the cold front, and that the concentration of ice crystals is as high as 60 L^(-1) and the supercooled water is absent in lower clouds. We may infer that the deposition of ice crystals and the aggregation of snow crystals are important processes for the snow development. The microphysical structure of the snow band near the front aloft and its characteristics as a seeder cloud are also described in this paper.展开更多
The track, landfall, dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the ...The track, landfall, dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the non-hydrostatic mesoscale model MM5. This period covered the process of typhoon HERB landfall at Taiwan and Fujian Provinces. Results show that the model successfully simulated the landfall process of typhoon HERB, revealed the most important characteristics of the mesoscale dynamic and thermodynamic and cloud-rain physical structure during its landfall. The simulated typhoon track was close to the observation. The center of cyclonic circulation simulated at 0000 UTC on 1 August 1996 (24 h integration) was located in shore near Fuqing, Fujian Province at which the typhoon was reported to landfall two hours later. It shows that strong upward motion formed by low level convergence existed in the eye-wall and subsidence at the eye. The wind field shows clear asymmetrical structure near the typhoon center. The cloud and rainband was screw-typed distributed around typhoon center, and consisted of meso-β scale rain cores. During the period of typhoon HERB staying near and passing over Taiwan, the lower cloud was developed in the eye region so that the previous clear typhoon eye on the satellite pictures became fuzzy. Observation shows that the typhoon center was 'warm', but the model simulations with higher space resolution show that in the mid-troposphere the region of eye-wall with stronger upward motion and more cloud-and rain- water was warmer than the eye. During the period of typhoon passing over Taiwan and its following landfall at Fujian, the track of model typhoon deviated about 30 km northward (i. e., rightward) because of the orographic effects of Taiwan Island, but the strength of the typhoon was not affected remarkably. The amount of rainfall on Taiwan in the 36 h simulations was enhanced more than six times by the orographic lifting of Taiwan Mountain.展开更多
基金sponsored by the Chinese Natural Science Foundation (Grant Nos. 40575003 and 40333033)the special foundation of the Chinese Academy of Meteorological Sciences (2011Z005)
文摘Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK010203)the National Natural Science Foundation of China (Grant No.42175174 and 41975130)+1 种基金the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1092)the Sichuan Provincial Innovation Training Program for College Students (Grant No.S202210621009)。
文摘In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.
基金supported by the National Natural Science Foundation of China(Grant No.41405006)the China Special Fund for Meteorological Research in the Public Interest(Grant Nos.GYHY201406003+3 种基金GYHY-201406001)the National Basic Research Program of China(Grant No.2012CB417204)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant Nos.2014R0162015Z003)
文摘The spatial distribution of clouds and their seasonal variations, and the three-dimensional(3D) cloud structures over East Asia have been analyzed with the CALIPSO-GOCCP data during the period from 2007 to 2012. The results show that there is a large cloud fraction greater than 0.7 over southern China, and the largest cloud fraction appears in southwest China. Besides, a large cloud fraction occurs over the southeast of the Tibetan Plateau. The total and high cloud fractions show notable variations with seasons, while the middle and low cloud fractions vary a little. As for cloud vertical structure, significant differences of the cloud vertical distributions are observed between over land and ocean. Cloud fractions and the height of the maximum cloud fractions decline gradually with the increasing latitude, except for the vertical-latitude profiles over the Tibetan Plateau regions. The longitude-vertical cross sections show similar patterns from the longitude 70° E to 140° E, except the profiles with large cloud fractions over the Tibetan Plateau. From the horizontal distribution patterns and vertical structures of the clouds over East Asia, it is concluded that the huge terrain of the Tibetan Plateau has significant impacts on the cloud formation over the Tibetan Plateau region and the areas to the east. At last, the clouds from the CALIPSO-GOCCP observations are compared to those from the ERA-Interim reanalysis data. The results indicate that the ERA-Interim reanalysis data provide reasonable spatial distribution patterns and the vertical structures in terms of the total cloud fraction over East Asia. However, the total cloud fraction was underestimated about 20% by the ERA-Interim reanalysis data over most parts of East Asia, especially over the neighboring areas east of the Tibetan Plateau. Additionally, the ERA-interim reanalysis data overestimate the cloud fractions at each level in the vertical direction.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41275077 and 41105054)the National Basic Research Program of China (973 Program:2010CB951902)+1 种基金the China Meteorological Administration (Grant Nos.GYHY201106022 and GYHY201306048)the Sun Yat-sen University "985 Project", Phase 3
文摘ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.
基金supported by the National Natural Science Foundation of China (Grant No. 41175120)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-203)
文摘ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 to 4600 m (0°C to -7.6°C), with liquid water content ranging from 0.01 to 0.09 g m-3. In the observed mixed-phase cloud, liquid water content exhibited a bimodal distribution, whereas the maximum ice particle concentration was located in the middle part of the cloud. The liquid and ice particle data showed significant horizontal variability on the scale of a few hundred meters. The cloud droplet concentration varied greatly over the horizontal sampling area. There was an inverse relationship between the cloud droplet concentration and ice particle concentration. A gamma distribution provided the best description of the cloud droplet spectra. The liquid droplet distributions were found to increase in both size and concentration with altitude. It was inferred from the profile of the spectra parameters that the cloud droplet sizes tend to form a quasi-monodisperse distribution. Ice particle spectra in the cloud were fitted well by an exponential distribution. Finally, a remarkable power law relationship was found between the slope (λ) and intercept (No) parameters of the exponential size distribution.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.
基金Supported by the Scientific Research Project of Meteorological Bureau of Hunan Province,China(XQKJ15B145)
文摘Based on NCEP 1°×1° reanalysis data, ground encryption houdy precipitation, FY-2E stationary satellite and Doppler radar data, the structural characteristics of precipitation clouds in Hunan Province and the effects of airplane precipitation operation were analyzed. The results show that under the effects of low-pressure system and southwest monsoon, Hunan was rich in water vapor, which was beneficial to the maintaining of precipitation clouds. During the process of the artificial precipitation operation over Hunan Province, convection developed vigorously, and precipita- tion was strong in the south of the province; embedded convective clouds were dominant and precipitation was weak in the east of the province. Cloud optical thickness correlated with ground precipitation positively. After catalyzing, echo at high altitudes responded firstly, and the echo intensi- ty increased gradually; the response of low-altitude echo lagged behind that of high-altitude echo. It shows that catalysis could lead to increase of upper precipitation particles in size and quantity. As time goes on, upper precipitation particles descended to low altitudes, so that echo intensity in- creased at low altitudes. It is clearly seen that catalysis could lead to increase of echo intensity and prolong the lifetime of target clouds to improve the area of strong echo zone, showing obvious positive catalytic effect. At the same time, houdy average precipitation in the affected region tended to increase stably and was obviously more than that of the contrast region where hourly average precipitation reduced gradually with time. The changing trend of hourly average precipitation in the affected region correlated positively with the response of radar echo.
基金This study was supported by the State Key Basic Program:Research on the Formation Mechanism and Prediction Theory of Severe Synoptic Dis- asters in China No.G1998040907 and the National NaturalSciences Foundation of China under Grant No.49735180
文摘Cloud micro-physical structures in a precipitation system associated with the Meiyu front are observed using the balloon-borne Precipitation Particle Image Sensor at Baoshan observatory station, Shanghai during June and July 1999. The vertical distributions of various cloud particle size, number density, and mass density are retrieved from the observations. Analyses of observations show that ice-phase particles (ice crystals, graupel, snowflakes, and frozen drops) often exist in the cloud of torrential rain associated with the Meiyu front. Among the various particles, ice crystals and graupel are the most numerous, but graupel and snow have the highest mass density. Ice-phase particles coexist with liquid water droplets near the 0°C level. The graupel is similarly distributed with height as the ice crystals. Raindrops below the 0°C level are mainly from melted grauple, snowflakes and frozen drops. They may further grow larger by coalescence with smaller ones as they fall from the cloud base. Numerical simulations using the non-hydrostatic meso-scale model MM5 with the Reisner graupel explicit moisture scheme confirm the main observational results. Rain water at the lower level is mainly generated from the melting of snow and graupel falling from the upper level where snow and graupel are generated and grown from collection with cloud and rain water. Thus the mixed-phase cloud process, in which ice phase coexists and interacts with liquid phase (cloud and rain drops), plays the most important role in the formation and development of heavy convective rainfall in the Meiyu frontal system.
基金supported by National Natural Science Foundation of China (GrantNo 40830102)the program "The Multi-scale Comprehensive Observation and Study of Spatial-Temporal Properties of Aerosol Project (MOSTap)" of National Basic Research Program of China (973 Program Grant No 2010CB950804)
文摘The accuracies of three instruments in measuring atmospheric column humidity were assessed during an upper troposphere and lower stratosphere observation campaign conducted from 7 to 13 August 2009 in Kunming, China. The three instruments are a cryogenic frost-point hygrometer (CFH), a Vaisala RS80 radiosonde (RS80), and a GTS1 radiosonde (GTS1). The accuracy of relative humidity (RH) measurements made by the CFH, GTS1, and RS80 was similar between the surface and 500 hPa (~5.5 km above sea level). However, above 500 hPa, the errors in RH measurements made by the RS80, relative to measurements made by the CFH, are much less than those detected with the GTS1. Three different retrieval methods for determining cloud boundaries from CFH, RS80, and GTS1 measurements were developed and take into account the differences in accuracy among the three instruments. The method for the CFH is based on RH thresholds at all levels, which demands high accuracy. Given that the accuracy of RH measurements decreases at higher altitudes, the cloud detection methods for RS80 and GTS1 are different for different altitude ranges. Below 5 km, the methods for the RS80 and the GTS1 are similar to that of the CFH; above 5 km, the methods for the RS80 and the GTS1 are both developed based on the second-order derivatives of temperature and RH with respect to height, but with different criteria applied. Comparisons of cloud-layer retrievals derived from the three measurements are also made.
基金Supported by Open Research Fund Project of Key Laboratory of Meteorology and Ecological Environment of Hebei Province(Z202001Z,Z201602Z)Science and Technology Collaborative Innovation Fund Project in Bohai Rim Region(QYXM202004)Key Projects of Tianjin Meteorological Bureau(201801zdxm01)。
文摘Based on L-band sounding data,threshold method of relative humidity was used to analyze vertical distribution characteristics of precipitation cloud system in Tianjin region.The results showed that main precipitation cloud system affecting Tianjin is cold and warm mixed cloud,followed by cold cloud,and precipitation of warm cloud is less.During May-November,precipitation of cold and warm mixed cloud is dominant,and it is dominant by precipitation of cold cloud from January to April.In four seasons,the precipitation frequency of double-layer cloud is the most,and precipitation of single-layer cloud mainly appears during March-November,and peak is in June.Peak of cloud system with three or more layers all appears in July and August.The cold cloud and warm cloud catalysts should be selected respectively for artificial precipitation enhancement in Tianjin.In winter,cold cloud catalyst operation is selected;in spring,summer and autumn,the cold cloud catalyst is spread in the cold cloud area,and the warm cloud catalyst is distributed in the warm cloud area according to the conditions of cloud layer.
基金supported by the Strategic Priority Research Program ‘The Emergence of Cosmological Structure’ of the Chinese Academy of Sciences (Grant No. XDB09000000)the Millimeter Wave Radio Astronomy Database, and the Key Laboratory for Radio Astronomy, CAS. Z.J. acknowledges the support by the National Natural Science Foundation of China (Grant No. 11233007)a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration
文摘We carried out observations toward the giant molecular cloud W 37 with the J = 1 - 0 transitions of 12CO, 13CO and C180 using the 13.7 m single-dish telescope at the Delingha station of Purple Mountain Observatory. Based on these CO lines, we calculated the column densities and cloud masses for molecular clouds with radial velocities around +20 km s-1. The gas mass of W 37, calculated from 13CO emission, is 1.7 × 10^5 M, above the criterion to be considered a giant molecular cloud. The dense ridge of W 37 is a dense filament, which is supercritical in terms of linear mass ratio. Dense clumps found by C180 emission are aligned along the dense ridge at regular intervals of about 2.8 pc, similar to the clump separation caused by large-scale 'sausage instability'. We confirm the identification of the giant molecular filament (GMF) G 18.0-16.8 and find a new giant filament, G 16.5-15.8, located ~ 0.7° to the west of G 18.0-16.8. Both GMFs are not gravitationally bound, as indicated by their low linear mass ratio (- 80 M pc-l). We compared the gas temperature map with the dust temperature map from Herschel images, and found similar structures. The spatial distributions of class I objects and the dense clumps are reminiscent of triggered star formation occurring in the northwestern part of W 37, which is close to NGC 6611.
基金The National Key Basic Research Program of China under contract No.2014CB953904the Natural Science Foundation of Guangdong Province under contract No.2015A030311026the National Natural Science Foundation of China under contract Nos 41275145 and 41275060
文摘The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.
基金National Natural Science Foundation of China(41275043)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this study, the vertical profiles of radar refractive factor(Z) observed with an X-band Doppler radar in Jurong on July 13, 2012 in different periods of a stratiform cloud precipitation process were simulated using the Sim RAD software, and the contributions of each impact resulting in the bright band were analyzed quantitatively. In the simulation, the parameters inputted into Sim RAD were updated until the output Z profile was nearly consistent with the observation. The input parameters were then deemed to reflect real conditions of the cloud and precipitation. The results showed that a wider(narrower) and brighter(darker) bright band corresponded to a larger(smaller) amount, wider(narrower) vertical distribution, and larger(smaller) mean diameter of melting particles in the melting layer. Besides this,radar reflectivity factors under the wider(narrower) melting layer were larger(smaller). This may be contributed to the adequate growth of larger rain drops in the upper melting layer. Sensitivity experiments of the generation of the radar bright band showed that a drastic increasing of the complex refractive index due to melting led to the largest impact,making the radar reflectivity factor increase by about 15 d BZ. Fragmentation of large particles was the second most important influence, making the value decrease by 10 d BZ. The collision-coalescence between melting particles, volumetric shrinking due to melting, and the falling speed of raindrops made the radar reflectivity factor change by about 3-7d BZ. Shape transformation from spheres to oblate ellipsoids resulted in only a slight increase in the radar reflectivity factors(about 0.2 d BZ), which might be due to the fact that there are few large particles in stratiform cloud.
文摘On April 27,2016,a striking true-color satellite image acquired by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard National Aeronautics and Space Administration’s(NASA’s)Aqua satellite showed several groups of very well structured arc cloud patterns(Fig.1),which are associaed with atmospheric gravity waves,aligned in the middle of the Atlantic Ocean between
文摘The microphysical structure of snow clouds and the growth process of snow crystals were observed by means of instrumented aircraft, weather radar, snow crystal observations etc. in Urumqi region during the winter of 1982. The analysis of three cases show that about 70% of snow mass growth is produced in the lower layer below 2000 m under the cold front, and that the concentration of ice crystals is as high as 60 L^(-1) and the supercooled water is absent in lower clouds. We may infer that the deposition of ice crystals and the aggregation of snow crystals are important processes for the snow development. The microphysical structure of the snow band near the front aloft and its characteristics as a seeder cloud are also described in this paper.
基金Supported by the Program of "Research on the Formation MechanismPrediction Theory of Severe Synoptic Disasters in China" (G1998040907).
文摘The track, landfall, dynamic and thermodynamic and cloud-rain physical mesoscale structures and their evolution of typhoon HERB 1996 in 36 h from 0000 UTC 31 July to 1200 UTC 1 August 1996 were simulated by using the non-hydrostatic mesoscale model MM5. This period covered the process of typhoon HERB landfall at Taiwan and Fujian Provinces. Results show that the model successfully simulated the landfall process of typhoon HERB, revealed the most important characteristics of the mesoscale dynamic and thermodynamic and cloud-rain physical structure during its landfall. The simulated typhoon track was close to the observation. The center of cyclonic circulation simulated at 0000 UTC on 1 August 1996 (24 h integration) was located in shore near Fuqing, Fujian Province at which the typhoon was reported to landfall two hours later. It shows that strong upward motion formed by low level convergence existed in the eye-wall and subsidence at the eye. The wind field shows clear asymmetrical structure near the typhoon center. The cloud and rainband was screw-typed distributed around typhoon center, and consisted of meso-β scale rain cores. During the period of typhoon HERB staying near and passing over Taiwan, the lower cloud was developed in the eye region so that the previous clear typhoon eye on the satellite pictures became fuzzy. Observation shows that the typhoon center was 'warm', but the model simulations with higher space resolution show that in the mid-troposphere the region of eye-wall with stronger upward motion and more cloud-and rain- water was warmer than the eye. During the period of typhoon passing over Taiwan and its following landfall at Fujian, the track of model typhoon deviated about 30 km northward (i. e., rightward) because of the orographic effects of Taiwan Island, but the strength of the typhoon was not affected remarkably. The amount of rainfall on Taiwan in the 36 h simulations was enhanced more than six times by the orographic lifting of Taiwan Mountain.