Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally re...Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally requiring human involvement.While some research has been conducted in this field of study,most efforts focus on faults identification through images or the design of robotic platforms,often neglecting the autonomous navigation of robots through the structure.This study addresses this limitation by proposing methods to detect navigable surfaces in truss structures,thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments.The paper proposes multiple approaches for the binary segmentation between navigable surfaces and background from 3D point clouds captured from metallic trusses.Approaches can be classified into two paradigms:analytical algorithms and deep learning methods.Within the analytical approach,an ad hoc algorithm is developed for segmenting the structures,leveraging different techniques to evaluate the eigendecomposition of planar patches within the point cloud.In parallel,widely used and advanced deep learning models,including PointNet,PointNet++,MinkUNet34C,and PointTransformerV3,are trained and evaluated for the same task.A comparative analysis of these paradigms reveals some key insights.The analytical algorithm demonstrates easier parameter adjustment and comparable performance to that of the deep learning models,despite the latter’s higher computational demands.Nevertheless,the deep learning models stand out in segmentation accuracy,with PointTransformerV3 achieving impressive results,such as a Mean Intersection Over Union(mIoU)of approximately 97%.This study highlights the potential of analytical and deep learning approaches to improve the autonomous navigation of climbing robots in complex truss structures.The findings underscore the trade-offs between computational efficiency and segmentation performance,offering valuable insights for future research and practical applications in autonomous infrastructure maintenance and inspection.展开更多
In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it...In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.展开更多
This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing proc...This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice.展开更多
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical pro...Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.展开更多
ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC...ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.展开更多
Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared...Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.展开更多
Cloud profiling radar(CPR) onboard Cloud Sat allows for deep penetration into dense clouds/precipitation. In this study, tropical cyclones(TCs) are classified into three stages as developing, mature, and decaying. The...Cloud profiling radar(CPR) onboard Cloud Sat allows for deep penetration into dense clouds/precipitation. In this study, tropical cyclones(TCs) are classified into three stages as developing, mature, and decaying. The circular TC area with the radius of 500 km is divided into five regions. The vertical structure characteristics of 94 Western Pacific TCs at different stages in different regions from June 2006 to February 2014 are statistically quantified using the Cloud Sat tropical cyclone overpass product(the CSTC Product). Contoured frequency by altitude diagrams(CFADs) of radar reflectivity show an arc-like feature and exhibit opposite distributions with a boundary at 5 km. Bright bands are found at this altitude, indicating melting layers. Deep convective(DC) clouds have the largest occurrence probability in the inner region, while Ci clouds occur more frequently in the outer region at 10-15 km. As clouds have the second largest vertical scale after DC clouds. Distributions of Ac, Cu, and Ns clouds at different stages have few distinctions.As the altitude increases, the ice effective radius and the distribution width parameter decrease while the particle number concentration increases. Moist static energy(MSE), cloud thickness(CT), liquid water path(LWP), ice water path(IWP), water vapor(WV), and rain rate(RR) all diminish along the radial direction and are significantly larger at the mature stage. The average value of MSE at the developing stage is larger than that at the decaying stage.展开更多
The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model ver...The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate.展开更多
The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM)...The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar(onboard CloudSat), collected from January 2007 to December 2010 over an ocean area(15°N–45°N,145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures;radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances(termed D_(rd)) and in physical structures(termed D_(st)) between cloud profiles. Statistics based on numerous cloud profiles show that D_(rd) decreases monotonically with a decrease in D_(st), which implies that small D_(rd) always accompanies small D_(st). According to the law of D_(rd) and D_(st), the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.展开更多
Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urba...Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urban environments.The task of 3D reconstruction from point clouds is still in the development phase,especially the recognition and interpretation of roof topological structures.Methods This study proposes a novel visual perception-based approach to automatically decompose and reconstruct building point clouds into meaningful and simple parametric structures,while the associated mutual relationships between the roof plane geometry and roof structure units are expressed by a hierarchical topology tree.First,a roof plane extraction is performed by a multi-label graph cut energy optimization framework and a roof structure graph(RSG)model is then constructed to describe the roof topological geometry with common adjacency,symmetry,and convexity rules.Moreover,a progressive roof decomposition and refinement are performed,generating a hierarchical representation of the 3D roof structure models.Finally,a visual plane fitted residual or area constraint process is adopted to generate the RSG model with different levels of details.Results Two airborne laser scanning datasets with different point densities and roof styles were tested,and the performance evaluation metrics were obtained by International Society for Photogrammetry and Remote Sensing,achieving a correctness and accuracy of 97.7%and 0.29m,respectively.Conclusions The standardized assessment results demonstrate the effectiveness and robustness of the proposed approach,showing its ability to generate a variety of structural models,even with missing data.展开更多
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit...Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.展开更多
The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the cloud...The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the clouds to the stage of studying the formation of macro- and microstructural characteristics of clouds as a whole, taking into account their system properties. The main directions of the development of cloud physics at the upcoming stage of its development are discussed. The paper points out that one of these areas is the determination of the structure-forming factors for the clouds and the study of their influence on their formation and evolution. It is noted that one of such factors is the interaction of clouds with their surrounding atmosphere, and the main method of studying its role in the processes of cloud formation is mathematical modeling. A three-dimensional nonstationary model of convective clouds is presented with a detailed account of the processes of thermohydrodynamics and microphysics, which is used for research. The results of modeling the influence of the wind field structure in the atmosphere on the formation and evolution of clouds are presented. It is shown that the dynamic characteristics of the atmosphere have a significant effect on the formation of macro- and microstructural characteristics of convective clouds: the more complex the structure of the wind field in the atmosphere (i.e., the more intense the interaction of the atmosphere and the cloud), the less powerful the clouds are formed.展开更多
We revisit the mass–size relation of molecular cloud structures based on the column density map of the Cygnus-X molecular cloud complex.We extract 135 column density peaks in Cygnus-X and analyze the column density d...We revisit the mass–size relation of molecular cloud structures based on the column density map of the Cygnus-X molecular cloud complex.We extract 135 column density peaks in Cygnus-X and analyze the column density distributions around these peaks.The averaged column density profiles,N(R),around all the peaks can be well fitted with broken power-laws,which are described by an inner power-law index n,outer power-law index m,and the radius RTP and column density NTP at the transition point.We then explore the M–R relation with different samples of cloud structures by varying the N(R)parameters and the column density threshold,N0,which determines the boundary of a cloud structure.We find that only when N0 has a wide range of values,the M–R relation may largely probe the density distribution,and the fitted power-law index of the M–R relation is related to the power-law index of N(R).On the contrary,with a constant N0,the M–R relation has no direct connection with the density distribution;in this case,the fitted power-law index of the M–R relation is equal to 2(when N_(0)≥N_(TP) and n has a narrow range of values),larger than 2(when N_(0)≥N_(TP) and n has a wide range of values),or slightly less than 2(when N_(0)<N_(TP)).展开更多
We identify 225 filaments from an H2 column density map constructed using simultaneous 12CO,13CO and C18O(J=1-0) observations carried out as a part of the Milky Way Imaging Scroll Painting(MWISP) project.We select 46 ...We identify 225 filaments from an H2 column density map constructed using simultaneous 12CO,13CO and C18O(J=1-0) observations carried out as a part of the Milky Way Imaging Scroll Painting(MWISP) project.We select 46 long filaments with lengths above 1.2 pc to analyze the filament column density profiles.We divide the selected filaments into 397 segments and calculate the column density profiles for each segment.The symmetries of the profiles are investigated.The proportion of intrinsically asymmetrical segments is 65.3%,and that of intrinsically symmetrical ones is 21.4%.The typical full width at half maximum(FWHM) of the intrinsically symmetrical filament segments is - 0.67 pc with the Plummer-like fitting,and - 0.50 pc with the Gaussian fitting,respectively.The median FWHMs derived from the second-moment method for intrinsically symmetrical and asymmetrical profiles are - 0.44 and 0.46 pc,respectively.Close association exists between the filamentary structures and the YSOs in the region.展开更多
Hypervelocity impact tests on multi-shock shields are carried out in order to develop space structures (against) space debris impacts. Sheets of LY12 aluminum were used as bumpers. The total thickness of shield struct...Hypervelocity impact tests on multi-shock shields are carried out in order to develop space structures (against) space debris impacts. Sheets of LY12 aluminum were used as bumpers. The total thickness of shield structure, which consists of several sheets with various thickness, is 3.0 mm or 2.0 mm. Results of the tests show that the type 0.5 mm+0.5 mm+0.5 mm+0.5 mm is a better choice of spacecraft shield structure.展开更多
A rapid and practical method is proposed to reconstruct surface based on the linked structured light stripes which are produced by structured light projection.The subpixel points on a stripe are linked firstly one by ...A rapid and practical method is proposed to reconstruct surface based on the linked structured light stripes which are produced by structured light projection.The subpixel points on a stripe are linked firstly one by one to form a stripe ensemble which is then transformed to a point ensemble in 3D space.The initial mesh with local optimization is generated by triangulating each two adjacent point ensembles.In order to obtain a better mesh,our improved edge flipping algorithm is employed to optimize the initial mesh globally.Because of employing the information of the linked structured stripes,our reconstruction algorithm is performed fastly.Moreover,the subpixel points on each stripe are already linked on the captured images such that they do not require the high sampling density.The experiments show that the proposed method constructs a surface rapidly and effectively.展开更多
We have conducted a large-field simultaneous survey of 12 CO,13 CO and C18O J=1-0 emission toward the Orion A giant molecular cloud(GMC)with a sky coverage of4.4 deg2 using the Purple Mountain Observatory(PMO)-13.7 m ...We have conducted a large-field simultaneous survey of 12 CO,13 CO and C18O J=1-0 emission toward the Orion A giant molecular cloud(GMC)with a sky coverage of4.4 deg2 using the Purple Mountain Observatory(PMO)-13.7 m millimeter-wavelength telescope.We use the probability distribution function of the column density(N-PDF)to investigate the distribution of molecular hydrogen in the Orion A GMC.The H2 column density,derived from the 13CO emission,of the GMC is dominated by a log-normal distribution in the range from4×1021 to1.5×1023 cm-2 with excesses both at the low-density and high-density ends.The excess of the low-density end is possibly caused by an extended and low-temperature(10 K)component with velocities in the range of 5-8 km s-1.Compared with the northern sub-regions,the southern sub-regions of the Orion A GMC contain less gas with column density in NH2>1.25×1022 cm-2.The dispersions of the N-PDFs of the sub-regions are found to correlate with the evolutionary stages of the clouds across the Orion A GMC.The structure hierarchy of Orion A GMC is explored with the DENDROGRAM algorithm,and it is found that the GMC is composed of two branches.All structures except one in the tree have virial parameters less than 2,indicating self-gravity is important on the spatial scales from0.3 to4 pc.Although power-laws and departures from lognormal distributions are found at the high-density end of N-PDFs for active star-forming regions,the N-PDFs of structures in the Orion A GMC are predominantly lognormal on scales from R0.4 to 4 pc.展开更多
Dual-plate structure is very effective in the protection of space vehicle from hypervelocity im- pact.The experiments of A1 projectile impacting A1 dual targets at the velocity ranging over 2.5—7.0 km/s were systemat...Dual-plate structure is very effective in the protection of space vehicle from hypervelocity im- pact.The experiments of A1 projectile impacting A1 dual targets at the velocity ranging over 2.5—7.0 km/s were systematically conducted.The damage effects were examined,including the perforation of the shield, the development of debris cloud and the general damage characteristics of the subplate.Many valuable experi- mental data and phenomena have been obtained展开更多
The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across sh...The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across short distances.These extreme habitat gradients make the Andean forest ecosystem an excellent natural laboratory for understanding the effect of elevation on forest community diversity,structure and composition.We established 31 plots(50 m×5 m)which are divided between two elevational transects in the cloud forest of the Siempre Verde Reserve in the western foothills of the Andes Mountains of northern Ecuador.All trees and tree ferns with a diameter at breast height(dbh)≥5 cm were measured and identified.We examined changes in community composition,structure,and diversity along and between the elevational transects and three elevational zones:low(2437–2700 m),middle(2756–3052 m),and high(3163–3334 m).We found four main trends associated with the elevational gradients at this site:(1)community composition differed between the two transects and among the three elevational zones according to N-MDS,ANOSIM,and percentage of shared species,with some species having limited distributions,(2)metrics of community structure showed opposite relationships with elevation,depending on the transect,with the only significant relationship(negative)found between basal area and elevation in the open trail transect,(3)alpha diversity,in general,peaked at mid-elevations,and(4)beta diversity consistently increased with distance between plots along elevation.The complexity of changes in community composition,structure,and alpha diversity along elevation may be related to the heterogeneity of the environment on a local scale,such as topography,soil composition,and even human impact,or to dispersal limitation and should be investigated further.These changes in community composition and the relatively high beta diversity found at this site exemplify the biological complexity of montane forest,reinforcing arguments from other studies on the importance of their conservation.展开更多
Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spec...Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.展开更多
基金funded by the spanish Ministry of Science,Innovation and Universities as part of the project PID2020-116418RB-I00 funded by MCIN/AEI/10.13039/501100011033.
文摘Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally requiring human involvement.While some research has been conducted in this field of study,most efforts focus on faults identification through images or the design of robotic platforms,often neglecting the autonomous navigation of robots through the structure.This study addresses this limitation by proposing methods to detect navigable surfaces in truss structures,thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments.The paper proposes multiple approaches for the binary segmentation between navigable surfaces and background from 3D point clouds captured from metallic trusses.Approaches can be classified into two paradigms:analytical algorithms and deep learning methods.Within the analytical approach,an ad hoc algorithm is developed for segmenting the structures,leveraging different techniques to evaluate the eigendecomposition of planar patches within the point cloud.In parallel,widely used and advanced deep learning models,including PointNet,PointNet++,MinkUNet34C,and PointTransformerV3,are trained and evaluated for the same task.A comparative analysis of these paradigms reveals some key insights.The analytical algorithm demonstrates easier parameter adjustment and comparable performance to that of the deep learning models,despite the latter’s higher computational demands.Nevertheless,the deep learning models stand out in segmentation accuracy,with PointTransformerV3 achieving impressive results,such as a Mean Intersection Over Union(mIoU)of approximately 97%.This study highlights the potential of analytical and deep learning approaches to improve the autonomous navigation of climbing robots in complex truss structures.The findings underscore the trade-offs between computational efficiency and segmentation performance,offering valuable insights for future research and practical applications in autonomous infrastructure maintenance and inspection.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK010203)the National Natural Science Foundation of China (Grant No.42175174 and 41975130)+1 种基金the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1092)the Sichuan Provincial Innovation Training Program for College Students (Grant No.S202210621009)。
文摘In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.
基金supported by the National Innovation Research Group Science Fund(No.41521002)the National Key Research and Development Program of China(No.2018YFC1505202)。
文摘This paper introduces the use of point cloud processing for extracting 3D rock structure and the 3DEC-related reconstruction of slope failure,based on a case study of the 2019 Pinglu rockfall.The basic processing procedure involves:(1)computing the point normal for HSV-rendering of point cloud;(2)automatically clustering the discontinuity sets;(3)extracting the set-based point clouds;(4)estimating of set-based mean orientation,spacing,and persistence;(5)identifying the block-forming arrays of discontinuity sets for the assessment of stability.The effectiveness of our rock structure processing has been proved by 3D distinct element back analysis.The results show that Sf M modelling and rock structure computing provides enormous cost,time and safety incentives in standard engineering practice.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 91437219, 91637312 and 91637101)the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSWDQC018)The CloudSat/CALIPSO data were obtained from the CloudSat Data Processing Center (http://www.cloudsat.cira. colostate.edu/order-data) funded by NASA’s CloudSat project
文摘Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.41275077 and 41105054)the National Basic Research Program of China (973 Program:2010CB951902)+1 种基金the China Meteorological Administration (Grant Nos.GYHY201106022 and GYHY201306048)the Sun Yat-sen University "985 Project", Phase 3
文摘ABSTRACT The abilities of BCC-AGCM2.1 and BCC_AGCM2.2 to simulate the annual-mean cloud vertical structure (CVS) were evaluated through comparison with GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) data. BCC-AGCM2.2 has a dynamical core and physical processes that are consistent with BCC-AGCM2.1, but has a higher horizontal resolution. Results showed that both BCC-AGCM versions underestimated the global-mean total cloud cover (TCC), middle cloud cover (MCC) and low cloud cover (LCC), and that BCC_AGCM2.2 underestimated the global-mean high cloud cover (HCC). The global-mean cloud cover shows a systematic decrease from BCCA-GCM2.1 to BCC_AGCM2.2, especially for HCC. Geographically, HCC is significantly overestimated in the tropics, particularly by BCC_AGCM2,1, while LCC is generally overestimated over extra-tropical lands, but significantly underestimated over most of the oceans, especially for subtropical marine stratocumulus clouds. The leading EOF modes of CVS were extracted. The BCC_AGCMs perform well in reproducing EOF1, but with a larger variance explained. The two models also capture the basic features of EOF3, except an obvious deficiency in eigen- vector peaks. EOF2 has the largest simulation biases in both position and strength of eigenvector peaks. Furthermore, we investigated the effects of CVS on relative shortwave and longwave cloud radiative forcing (RSCRF and RLCRF). Both BCC_AGCM versions successfully reproduce the sign of regression coefficients, except for RLCRF in PC1. However, the RSCRF relative contributions from PC1 and PC2 are overestimated, while the relative contribution from PC3 is underes timated in both BCC_AGCM versions. The RLCRF relative contribution is underestimated for PC2 and overestimated for PC3.
基金sponsored by the Chinese Natural Science Foundation (Grant Nos. 40575003 and 40333033)the special foundation of the Chinese Academy of Meteorological Sciences (2011Z005)
文摘Cloud structure and evolution of Mesoscale Convective Systems (MCSs) retrieved from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) and Precipitation Radar (PR) were investigated and compared with some pioneer studies based on soundings and models over the northern South China Sea (SCS). The impacts of Convective Available Potential Energy (CAPE) and environmental vertical wind shear on MCSs were also explored. The main features of MCSs over the SCS were captured well by both TRMM PR and TMI. However, the PR-retrieved surface rainfall in May was less than that in June, and the reverse for TMI. TRMM-retrieved rainfall amounts were generally consistent with those estimated from sounding and models. However, rainfall amounts from sounding-based and PR-based estimates were relatively higher than those retrieved from TRMM-TMI data. The Weather Research and Forecasting (WRF) modeling simulation underestimated the maximum rain rate by 22% compared to that derived from TRMM-PR, and underestimated mean rainfall by 10.4% compared to the TRMM-TMI estimate, and by 12.5% compared to the sounding-based estimate. The warm microphysical processes modeled from both the WRF and the Goddard Cumulus Ensemble (GCE) models were quite close to those based on TMI, but the ice water contents in the models were relatively less compared to that derived from TMI. The CAPE and wind shear induced by the monsoon circulation were found to play critical roles in maintaining and developing the intense convective clouds over SCS. The latent heating rate increased more than twofold during the monsoon period and provided favorable conditions for the upward transportation of energy from the ocean, giving rise to the possibility of inducing large-scale interactions.
基金National Natural Science Foundation of China(41076118)Young Scientists Fund of National Natural Science Foundation of China Grant(41005018)
文摘Cloud profiling radar(CPR) onboard Cloud Sat allows for deep penetration into dense clouds/precipitation. In this study, tropical cyclones(TCs) are classified into three stages as developing, mature, and decaying. The circular TC area with the radius of 500 km is divided into five regions. The vertical structure characteristics of 94 Western Pacific TCs at different stages in different regions from June 2006 to February 2014 are statistically quantified using the Cloud Sat tropical cyclone overpass product(the CSTC Product). Contoured frequency by altitude diagrams(CFADs) of radar reflectivity show an arc-like feature and exhibit opposite distributions with a boundary at 5 km. Bright bands are found at this altitude, indicating melting layers. Deep convective(DC) clouds have the largest occurrence probability in the inner region, while Ci clouds occur more frequently in the outer region at 10-15 km. As clouds have the second largest vertical scale after DC clouds. Distributions of Ac, Cu, and Ns clouds at different stages have few distinctions.As the altitude increases, the ice effective radius and the distribution width parameter decrease while the particle number concentration increases. Moist static energy(MSE), cloud thickness(CT), liquid water path(LWP), ice water path(IWP), water vapor(WV), and rain rate(RR) all diminish along the radial direction and are significantly larger at the mature stage. The average value of MSE at the developing stage is larger than that at the decaying stage.
基金National Natural Science Foundation of China(41575108,41475082,42075012)。
文摘The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate.
基金supported by the National Natural Science Foundation of China (Grant 41775032)Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant QYZDY-SSW-DQC027)
文摘The radiances scattered or emitted by clouds demonstrate diverse features at different wavelengths due to different cloud physical structures. This paper presents a method(the smallest-radiance-distance method, SRaDM) of revealing the physical structures of clouds. The method is based on multi-spectral radiances measured by the Moderate Resolution Imaging Spectroradiometer(MODIS)onboard Aqua. The principle and methodology of SRaDM is deduced and provided in this paper. Correlation analysis based on data from MODIS and Cloud Profiling Radar(onboard CloudSat), collected from January 2007 to December 2010 over an ocean area(15°N–45°N,145°E–165°E), led to selection of radiances at 13 wavebands of MODIS that demonstrated high sensitivity to cloud physical structures;radiances at the selected wavebands were subjected to SRaDM. The Standardized Euclidean distance is introduced to quantify the degree of changes in multi-spectral radiances(termed D_(rd)) and in physical structures(termed D_(st)) between cloud profiles. Statistics based on numerous cloud profiles show that D_(rd) decreases monotonically with a decrease in D_(st), which implies that small D_(rd) always accompanies small D_(st). According to the law of D_(rd) and D_(st), the new method, SRaDM, for revealing physical structures of clouds from the collocation of cloud profiles of similar multi-spectral radiances, is presented. Then, two successful experiments are presented in which cloud physical structures are captured using multi-spectral radiances. SRaDM provides a way to obtain knowledge of the physical structures of clouds over relatively larger areas, and is a new approach to obtaining 3D cloud fields.
基金Supported by the National Natural Science Foundation of China(41901405,41725005,41531177)and the National Key Research and Development Program of China(2016YFF0103501).
文摘Background Three-dimensional(3D)building models with unambiguous roof plane geometry parameters,roof structure units,and linked topology provide essential data for many applications related to human activities in urban environments.The task of 3D reconstruction from point clouds is still in the development phase,especially the recognition and interpretation of roof topological structures.Methods This study proposes a novel visual perception-based approach to automatically decompose and reconstruct building point clouds into meaningful and simple parametric structures,while the associated mutual relationships between the roof plane geometry and roof structure units are expressed by a hierarchical topology tree.First,a roof plane extraction is performed by a multi-label graph cut energy optimization framework and a roof structure graph(RSG)model is then constructed to describe the roof topological geometry with common adjacency,symmetry,and convexity rules.Moreover,a progressive roof decomposition and refinement are performed,generating a hierarchical representation of the 3D roof structure models.Finally,a visual plane fitted residual or area constraint process is adopted to generate the RSG model with different levels of details.Results Two airborne laser scanning datasets with different point densities and roof styles were tested,and the performance evaluation metrics were obtained by International Society for Photogrammetry and Remote Sensing,achieving a correctness and accuracy of 97.7%and 0.29m,respectively.Conclusions The standardized assessment results demonstrate the effectiveness and robustness of the proposed approach,showing its ability to generate a variety of structural models,even with missing data.
基金funded by China Railway No.21 Bureau Group No.1 Engineering Co.,Ltd.,Grant No.202209140002.
文摘Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.
文摘The state of the physics of convective clouds and cloud seeding is discussed briefly. It is noted that at the present time there is a transition from the stage of investigation of “elementary” processes in the clouds to the stage of studying the formation of macro- and microstructural characteristics of clouds as a whole, taking into account their system properties. The main directions of the development of cloud physics at the upcoming stage of its development are discussed. The paper points out that one of these areas is the determination of the structure-forming factors for the clouds and the study of their influence on their formation and evolution. It is noted that one of such factors is the interaction of clouds with their surrounding atmosphere, and the main method of studying its role in the processes of cloud formation is mathematical modeling. A three-dimensional nonstationary model of convective clouds is presented with a detailed account of the processes of thermohydrodynamics and microphysics, which is used for research. The results of modeling the influence of the wind field structure in the atmosphere on the formation and evolution of clouds are presented. It is shown that the dynamic characteristics of the atmosphere have a significant effect on the formation of macro- and microstructural characteristics of convective clouds: the more complex the structure of the wind field in the atmosphere (i.e., the more intense the interaction of the atmosphere and the cloud), the less powerful the clouds are formed.
基金supported by the National Key R&D Program of China No. 2017YFA0402600.support from the National Natural Science Foundation of China (NSFC) through grants U1731237, 11473011, 11590781 and 11629302。
文摘We revisit the mass–size relation of molecular cloud structures based on the column density map of the Cygnus-X molecular cloud complex.We extract 135 column density peaks in Cygnus-X and analyze the column density distributions around these peaks.The averaged column density profiles,N(R),around all the peaks can be well fitted with broken power-laws,which are described by an inner power-law index n,outer power-law index m,and the radius RTP and column density NTP at the transition point.We then explore the M–R relation with different samples of cloud structures by varying the N(R)parameters and the column density threshold,N0,which determines the boundary of a cloud structure.We find that only when N0 has a wide range of values,the M–R relation may largely probe the density distribution,and the fitted power-law index of the M–R relation is related to the power-law index of N(R).On the contrary,with a constant N0,the M–R relation has no direct connection with the density distribution;in this case,the fitted power-law index of the M–R relation is equal to 2(when N_(0)≥N_(TP) and n has a narrow range of values),larger than 2(when N_(0)≥N_(TP) and n has a wide range of values),or slightly less than 2(when N_(0)<N_(TP)).
基金supported by National Key R&D Program of China (Grant 2017YFA0402701)Key Research Program of Frontier Sciences of CAS (Grant QYZDJ-SSW-SLH047)+1 种基金support by the National Natural Science Foundation of China (NSFC,Grant No.1973091)supports by the NSFC (Nos.11503086 and 11503087)。
文摘We identify 225 filaments from an H2 column density map constructed using simultaneous 12CO,13CO and C18O(J=1-0) observations carried out as a part of the Milky Way Imaging Scroll Painting(MWISP) project.We select 46 long filaments with lengths above 1.2 pc to analyze the filament column density profiles.We divide the selected filaments into 397 segments and calculate the column density profiles for each segment.The symmetries of the profiles are investigated.The proportion of intrinsically asymmetrical segments is 65.3%,and that of intrinsically symmetrical ones is 21.4%.The typical full width at half maximum(FWHM) of the intrinsically symmetrical filament segments is - 0.67 pc with the Plummer-like fitting,and - 0.50 pc with the Gaussian fitting,respectively.The median FWHMs derived from the second-moment method for intrinsically symmetrical and asymmetrical profiles are - 0.44 and 0.46 pc,respectively.Close association exists between the filamentary structures and the YSOs in the region.
文摘Hypervelocity impact tests on multi-shock shields are carried out in order to develop space structures (against) space debris impacts. Sheets of LY12 aluminum were used as bumpers. The total thickness of shield structure, which consists of several sheets with various thickness, is 3.0 mm or 2.0 mm. Results of the tests show that the type 0.5 mm+0.5 mm+0.5 mm+0.5 mm is a better choice of spacecraft shield structure.
基金the Fundamental Research Funds for the Central Universities of SCUT (No.2009ZM0235)the National Natural Science Foundation of China (No.30470488)
文摘A rapid and practical method is proposed to reconstruct surface based on the linked structured light stripes which are produced by structured light projection.The subpixel points on a stripe are linked firstly one by one to form a stripe ensemble which is then transformed to a point ensemble in 3D space.The initial mesh with local optimization is generated by triangulating each two adjacent point ensembles.In order to obtain a better mesh,our improved edge flipping algorithm is employed to optimize the initial mesh globally.Because of employing the information of the linked structured stripes,our reconstruction algorithm is performed fastly.Moreover,the subpixel points on each stripe are already linked on the captured images such that they do not require the high sampling density.The experiments show that the proposed method constructs a surface rapidly and effectively.
基金supported by National Key R&D Program of China(2017YFA0402701)Key Research Program of Frontier Sciences of CAS(QYZDJSSW-SLH047)supports by the National Natural Science Foundation of China(Grant Nos.11503086 and 11503087)。
文摘We have conducted a large-field simultaneous survey of 12 CO,13 CO and C18O J=1-0 emission toward the Orion A giant molecular cloud(GMC)with a sky coverage of4.4 deg2 using the Purple Mountain Observatory(PMO)-13.7 m millimeter-wavelength telescope.We use the probability distribution function of the column density(N-PDF)to investigate the distribution of molecular hydrogen in the Orion A GMC.The H2 column density,derived from the 13CO emission,of the GMC is dominated by a log-normal distribution in the range from4×1021 to1.5×1023 cm-2 with excesses both at the low-density and high-density ends.The excess of the low-density end is possibly caused by an extended and low-temperature(10 K)component with velocities in the range of 5-8 km s-1.Compared with the northern sub-regions,the southern sub-regions of the Orion A GMC contain less gas with column density in NH2>1.25×1022 cm-2.The dispersions of the N-PDFs of the sub-regions are found to correlate with the evolutionary stages of the clouds across the Orion A GMC.The structure hierarchy of Orion A GMC is explored with the DENDROGRAM algorithm,and it is found that the GMC is composed of two branches.All structures except one in the tree have virial parameters less than 2,indicating self-gravity is important on the spatial scales from0.3 to4 pc.Although power-laws and departures from lognormal distributions are found at the high-density end of N-PDFs for active star-forming regions,the N-PDFs of structures in the Orion A GMC are predominantly lognormal on scales from R0.4 to 4 pc.
文摘Dual-plate structure is very effective in the protection of space vehicle from hypervelocity im- pact.The experiments of A1 projectile impacting A1 dual targets at the velocity ranging over 2.5—7.0 km/s were systematically conducted.The damage effects were examined,including the perforation of the shield, the development of debris cloud and the general damage characteristics of the subplate.Many valuable experi- mental data and phenomena have been obtained
基金Pontificia Universidad Católica del Ecuador-Herbario QCA project“Fortalecimiento de la colección del Herbario QCA mediante inventarios botánicos enáreas de vacío de información florística,código K13-056”Siempre Verde Cloud Forest Reserve+1 种基金Columbus State Universitythe Lovett School for financial and logistic support。
文摘The Andean forests of northern Ecuador are known for their high levels of plant diversity relative to the area they occupy.Typically,these forests grow on steep slopes that lead to dramatic habitat gradients across short distances.These extreme habitat gradients make the Andean forest ecosystem an excellent natural laboratory for understanding the effect of elevation on forest community diversity,structure and composition.We established 31 plots(50 m×5 m)which are divided between two elevational transects in the cloud forest of the Siempre Verde Reserve in the western foothills of the Andes Mountains of northern Ecuador.All trees and tree ferns with a diameter at breast height(dbh)≥5 cm were measured and identified.We examined changes in community composition,structure,and diversity along and between the elevational transects and three elevational zones:low(2437–2700 m),middle(2756–3052 m),and high(3163–3334 m).We found four main trends associated with the elevational gradients at this site:(1)community composition differed between the two transects and among the three elevational zones according to N-MDS,ANOSIM,and percentage of shared species,with some species having limited distributions,(2)metrics of community structure showed opposite relationships with elevation,depending on the transect,with the only significant relationship(negative)found between basal area and elevation in the open trail transect,(3)alpha diversity,in general,peaked at mid-elevations,and(4)beta diversity consistently increased with distance between plots along elevation.The complexity of changes in community composition,structure,and alpha diversity along elevation may be related to the heterogeneity of the environment on a local scale,such as topography,soil composition,and even human impact,or to dispersal limitation and should be investigated further.These changes in community composition and the relatively high beta diversity found at this site exemplify the biological complexity of montane forest,reinforcing arguments from other studies on the importance of their conservation.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘Airborne measurements were collected during a stepwise ascent within a nimbostratus cloud associated with a cold vortex depression over the Jilin Province on 21 June 2005 to study cloud structure and ice particle spectra. The melting layer of the nimbostratus was clearly defined in the radar images. The microphysical structure of the nimbostratus was elucidated by a King liquid water probe and Particle Measuring Systems (PMS) probes aboard the research aircraft. The PMS 2-D images provided detailed information of ice crystal transformations. A thick layer of supercooled cloud was observed, and the high ice particle concentrations at temperatures ranging from -3℃ to -6℃ were consistent with Hallett-Mossop ice multiplication. The shape of ice crystals from near the cloud top to the melting layer were in the form of columns, needles, aggregations, and plates. In addition, significant horizontal variability was evident on the scale of few hundred meters. Particle spectra in this cloud were adequately described by exponential relationships. Relationship between the intercept (No) and slope (2) parameters of an exponential size distribution was well characterized by a power law.