For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the ...For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.展开更多
The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based t...The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.展开更多
Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effect...Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects.展开更多
With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicalit...With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicality and reliability. In the traditional condition assessment method, due to the characteristics of the transformer’s complex structure, the assessment system is not comprehensive enough, or the assessment system is too complex, the indexes are not easy to quantify, such problems are emerging. The traditional method is complex and the degree of quantification is not enough. Therefore it is necessary to propose a condition assessment method that is easy to carry out the condition assessment work and does not affect the assessment results. In this paper, we propose a method to assess the state of the transformer’s complex structure. First, we establish a comprehensive assessment system, then apply the method of principal component analysis to optimize the index system, and then use the theory of cloud-matter-element. Finally the reliability and rationality of the method are verified by an example.展开更多
We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Lang...We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.展开更多
Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is pr...Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is proposed in this paper.As shown in numerical experiments,in case of a ground-based lidar,the error in the aerosol optical depth solution can be less than 10%,and the error of < 6.7 in the aerosol exhnction to backscatter ratio can be obtained if the error in the lidar constant is<6%;and in the case of a spaceborne lidar,the present method can be ugh to determine the lidar constant at a short wavelength with an accuracy of being better than 1%.展开更多
Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexit...Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.展开更多
Cloud computing systems play a vital role in national security. This paper describes a conceptual framework called dualsystem architecture for protecting computing environments. While attempting to be logical and rigo...Cloud computing systems play a vital role in national security. This paper describes a conceptual framework called dualsystem architecture for protecting computing environments. While attempting to be logical and rigorous, formalism method is avoided and this paper chooses algebra Communication Sequential Process.展开更多
A series of plane-parallel photodissociation region (PDR) models are calculated using the spectral synthesis code CLOUDY. These models span a wide range of physical conditions, with gas densities of n=10^2-10^6cm^-3...A series of plane-parallel photodissociation region (PDR) models are calculated using the spectral synthesis code CLOUDY. These models span a wide range of physical conditions, with gas densities of n=10^2-10^6cm^-3 and incident far-ultraviolet (FUV) fields of Go=10^0-10^6 (where Go is the FUV flux in units of the local interstellar value), which are comparable with various astrophysical environments from interstellar diffuse clouds to the dense neutral gas around galactic compact H Ⅱ regions. Based on the calculated results, we study the thermal balance of PDR gas and the emissions of [C Ⅱ], [C I] and [O I] fine-structure lines under different physical conditions. The intensities and strength ratios of the studied lines, which are frequently used as PDR diagnostics, are presented using contour diagrams as functions of n and Go. We compare the calculated PDR surface gas temperatures Ts with those from Kaufman et al. and find that Ts from our models are systematically higher over most of the adopted n-Go parameter space. The predicated line intensities and ratios from our work and those from Kaufman et al. can be different by a factor greater than 10, and such large differences usually occur near the border of our parameter space. The different methods of treating the dust grain physics, the change of H2 formation and dissociation rates, and the improvement in the radiation transfer of line emissions in our CLOUDY models are likely to be the major reasons for the divergences. Our models represent an up-to-date treatment of PDR diagnostic calculations and can be used to interpret observational data. Meanwhile, the uncertainties in the treatment of microphysics and chemical processes in PDR models have significant effects on PDR diagnostics.展开更多
Theoretically, stars formed from the collapse of cores in molecular clouds. Historically, the core had been assumed to be a singular isothermal sphere (SIS), and the collapse had been investigated in a self-similar ...Theoretically, stars formed from the collapse of cores in molecular clouds. Historically, the core had been assumed to be a singular isothermal sphere (SIS), and the collapse had been investigated in a self-similar manner. When the rotation and magnetic fields lead to non-symmetric collapse, a spheroidal shape may occur. Here, the result of the centrifugal force and magnetic field gradient is assumed to be in the normal direction to the rotational axis, and its components are supposed to be a fraction β of the local gravitational force. In this research, a collapsing SIS core is considered to find the importance that the parameter β plays in the oblateness of the mass shells, which are the crests of the expansion waves. We apply the Adomian decomposition method to solve the system of nonlinear partial differential equations because the collapse does not occur in a spherically symmetric and self-similar man- ner. In this way, we obtain a semi-analytical relation for the mass infall rate M of the shells in the envelope. Near the rotational axis, M˙ decreases with the increase of the non-dimensional radius ξ, while a direct relation is observed between M˙ and ξ in the equatorial regions. Also, the values of M˙ in the polar regions are greater than their equatorial values, and this difference occurs more often at smaller values of ξ. Overall, the results show that before reaching the crest of the expansion wave, the visible shape of the molecular cloud cores can evolve into oblate spheroids. The ratio of major to minor axes of oblate cores increases when increasing the parameter β, and its value can approach the observed elongated shapes of cores in the maps of molecular clouds, such as those in Taurus and Perseus.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weis...A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.展开更多
基金Key Fostering Project of National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘For Microwave Humidity and Temperature sounder(MWHTS) measurements over the ocean, a cloud filtering method is presented to filter out cloud-and precipitation-affected observations by analyzing the sensitivity of the simulated brightness temperatures of MWHTS to cloud liquid water, and using the root mean square error(RMSE)between observation and simulation in clear sky as a reference standard. The atmospheric temperature and humidity profiles are retrieved using MWHTS measurements with and without filtering by multiple linear regression(MLR),artificial neural networks(ANN) and one-dimensional variational(1DVAR) retrieval methods, respectively, and the effects of the filtering method on the retrieval accuracies are analyzed. The numerical results show that the filtering method can improve the retrieval accuracies of the MLR and the 1DVAR retrieval methods, but have little influence on that of the ANN. In addition, the dependencies of the retrieval methods upon the testing samples of brightness temperature are studied, and the results show that the 1DVAR retrieval method has great stability due to that the testing samples have great impact on the retrieval accuracies of the MLR and the ANN, but have little impact on that of the 1DVAR.
文摘The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.
文摘Volume parameter is the basic content of a spatial body object morphology analysis.However,the challenge lies in the volume calculation of irregular objects.The point cloud slicing method proposed in this study effectively works in calculating the volume of the point cloud of the spatial object obtained through three-dimensional laser scanning(3DLS).In this method,a uniformly spaced sequent slicing process is first conducted in a specific direction on the point cloud of the spatial object obtained through 3DLS.A series of discrete point cloud slices corresponding to the point cloud bodies are then obtained.Subsequently,the outline boundary polygon of the point cloud slicing is searched one by one in accordance with the slicing sequence and areas of the polygon.The point cloud slice is also calculated.Finally,the individual point cloud section volume is calculated through the slicing areas and the adjacent slicing gap.Thus,the total volume of the scanned spatial object can be calculated by summing up the individual volumes.According to the results and analysis of the calculated examples,the slice-based volume-calculating method for the point cloud of irregular objects obtained through 3DLS is correct,concise in process,reliable in results,efficient in calculation methods,and controllable on accuracy.This method comes as a good solution to the volume calculation of irregular objects.
文摘With the development of power grid, as one of the key equipment, the transformer’s condition assessment method has always receive attention from experts, scholars concern more and more about the method’s practicality and reliability. In the traditional condition assessment method, due to the characteristics of the transformer’s complex structure, the assessment system is not comprehensive enough, or the assessment system is too complex, the indexes are not easy to quantify, such problems are emerging. The traditional method is complex and the degree of quantification is not enough. Therefore it is necessary to propose a condition assessment method that is easy to carry out the condition assessment work and does not affect the assessment results. In this paper, we propose a method to assess the state of the transformer’s complex structure. First, we establish a comprehensive assessment system, then apply the method of principal component analysis to optimize the index system, and then use the theory of cloud-matter-element. Finally the reliability and rationality of the method are verified by an example.
基金supported by the National Natural Science Foundation of China(Grant No.40875012)the National Basic Research Program of China(Grant No.2009CB421502)the Meteorology Open Fund of Huaihe River Basin(HRM200704).
文摘We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.
文摘Based on ullstability of inversion algorithms of the lidar equation caused by molecular scattering,a new algorithm to derive both the aerosol extinction to backscatter ratio and the extinchon coefficient profile is proposed in this paper.As shown in numerical experiments,in case of a ground-based lidar,the error in the aerosol optical depth solution can be less than 10%,and the error of < 6.7 in the aerosol exhnction to backscatter ratio can be obtained if the error in the lidar constant is<6%;and in the case of a spaceborne lidar,the present method can be ugh to determine the lidar constant at a short wavelength with an accuracy of being better than 1%.
基金funded by China Railway No.21 Bureau Group No.1 Engineering Co.,Ltd.,Grant No.202209140002.
文摘Rapid urbanization has led to a surge in the number of towering structures,and overturning is widely used because it can better accommodate the construction of shaped structures such as variable sections.The complexity of the construction process makes the construction risk have certain randomness,so this paper proposes a cloudbased coupled matter-element model to address the ambiguity and randomness in the safety risk assessment of overturning construction of towering structures.In the pretended model,the digital eigenvalues of the cloud model are used to replace the eigenvalues in the matter–element basic element,and calculate the cloud correlation of the risk assessment metrics through the correlation algorithm of the cloud model to build the computational model.Meanwhile,the improved hierarchical analysis method based on the cloud model is used to determine the weight of the index.The comprehensive evaluation scores of the evaluation event are then obtained through the weighted average method,and the safety risk level is determined accordingly.Through empirical analysis,(1)the improved hierarchical analysis method based on the cloud model can incorporate the data of multiple decisionmakers into the calculation formula to determine theweights,which makes the assessment resultsmore credible;(2)the evaluation results of the cloud-basedmatter-element coupledmodelmethod are basically consistent with those of the other two commonly used methods,and the confidence factor is less than 0.05,indicating that the cloudbased physical element coupled model method is reasonable and practical for towering structure overturning;(3)the cloud-based coupled element model method,which confirms the reliability of risk level by performing Spearman correlation on comprehensive assessment scores,can provide more comprehensive information of instances compared with other methods,and more comprehensively reflects the fuzzy uncertainty relationship between assessment indexes,which makes the assessment results more realistic,scientific and reliable.
文摘Cloud computing systems play a vital role in national security. This paper describes a conceptual framework called dualsystem architecture for protecting computing environments. While attempting to be logical and rigorous, formalism method is avoided and this paper chooses algebra Communication Sequential Process.
文摘A series of plane-parallel photodissociation region (PDR) models are calculated using the spectral synthesis code CLOUDY. These models span a wide range of physical conditions, with gas densities of n=10^2-10^6cm^-3 and incident far-ultraviolet (FUV) fields of Go=10^0-10^6 (where Go is the FUV flux in units of the local interstellar value), which are comparable with various astrophysical environments from interstellar diffuse clouds to the dense neutral gas around galactic compact H Ⅱ regions. Based on the calculated results, we study the thermal balance of PDR gas and the emissions of [C Ⅱ], [C I] and [O I] fine-structure lines under different physical conditions. The intensities and strength ratios of the studied lines, which are frequently used as PDR diagnostics, are presented using contour diagrams as functions of n and Go. We compare the calculated PDR surface gas temperatures Ts with those from Kaufman et al. and find that Ts from our models are systematically higher over most of the adopted n-Go parameter space. The predicated line intensities and ratios from our work and those from Kaufman et al. can be different by a factor greater than 10, and such large differences usually occur near the border of our parameter space. The different methods of treating the dust grain physics, the change of H2 formation and dissociation rates, and the improvement in the radiation transfer of line emissions in our CLOUDY models are likely to be the major reasons for the divergences. Our models represent an up-to-date treatment of PDR diagnostic calculations and can be used to interpret observational data. Meanwhile, the uncertainties in the treatment of microphysics and chemical processes in PDR models have significant effects on PDR diagnostics.
基金supported by the Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)
文摘Theoretically, stars formed from the collapse of cores in molecular clouds. Historically, the core had been assumed to be a singular isothermal sphere (SIS), and the collapse had been investigated in a self-similar manner. When the rotation and magnetic fields lead to non-symmetric collapse, a spheroidal shape may occur. Here, the result of the centrifugal force and magnetic field gradient is assumed to be in the normal direction to the rotational axis, and its components are supposed to be a fraction β of the local gravitational force. In this research, a collapsing SIS core is considered to find the importance that the parameter β plays in the oblateness of the mass shells, which are the crests of the expansion waves. We apply the Adomian decomposition method to solve the system of nonlinear partial differential equations because the collapse does not occur in a spherically symmetric and self-similar man- ner. In this way, we obtain a semi-analytical relation for the mass infall rate M of the shells in the envelope. Near the rotational axis, M˙ decreases with the increase of the non-dimensional radius ξ, while a direct relation is observed between M˙ and ξ in the equatorial regions. Also, the values of M˙ in the polar regions are greater than their equatorial values, and this difference occurs more often at smaller values of ξ. Overall, the results show that before reaching the crest of the expansion wave, the visible shape of the molecular cloud cores can evolve into oblate spheroids. The ratio of major to minor axes of oblate cores increases when increasing the parameter β, and its value can approach the observed elongated shapes of cores in the maps of molecular clouds, such as those in Taurus and Perseus.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金supported by the National Natural Science Foundation of China(No.11172134)
文摘A preconditioned gridless method is developed for solving the Euler equations at low Mach numbers.The preconditioned system in a conservation form is obtained by multiplying apreconditioning matrix of the type of Weiss and Smith to the time derivative of the Euler equations,which are discretized using agridless technique wherein the physical domain is distributed by clouds of points.The implementation of the preconditioned gridless method is mainly based on the frame of the traditional gridless method without preconditioning,which may fail to converge for low Mach number simulations.Therefore,the modifications corresponding to the affected terms of preconditioning are mainly addressed.The numerical results show that the preconditioned gridless method still functions for compressible transonic flow simulations and additionally,for nearly incompressible flow simulations at low Mach numbers as well.The paper ends with the nearly incompressible flow over a multi-element airfoil,which demonstrates the ability of the method presented for treating flows over complicated geometries.