The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi...The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.展开更多
Maintaining high-quality service supply and sustainability in modern cloud computing is essential to ensuring optimal system performance and energy efficiency.A novel approach is introduced in this study to decrease a...Maintaining high-quality service supply and sustainability in modern cloud computing is essential to ensuring optimal system performance and energy efficiency.A novel approach is introduced in this study to decrease a system's overall delay and energy consumption by using a deep reinforcement learning(DRL)model to predict and allocate incoming workloads flexibly.The proposed methodology integrates workload prediction utilising long short-term memory(LSTM)networks with efficient load-balancing techniques led by deep Q-learning and Actor-critic algorithms.By continuously analysing current and historical data,the model can efficiently allocate resources,prioritizing speed and energy preservation.The experimental results demonstrate that our load balancing system,which utilises DRL,significantly reduces average response times and energy usage compared to traditional methods.This approach provides a scalable and adaptable strategy for enhancing cloud infrastructure performance.It consistently provides reliable and durable performance across a range of dynamic workloads.展开更多
Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exh...Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exhibit multidimensionality,nonlinearity,and high volatility,making the high-precision prediction of resource utilization a complex and challenging task.At present,cloud computing resource prediction methods include traditional statistical models,hybrid approaches combining machine learning and classical models,and deep learning techniques.Traditional statistical methods struggle with nonlinear predictions,hybrid methods face challenges in feature extraction and long-term dependencies,and deep learning methods incur high computational costs.The above methods are insufficient to achieve high-precision resource prediction in cloud computing systems.Therefore,we propose a new time series prediction model,called SDVformer,which is based on the Informer model by integrating the Savitzky-Golay(SG)filters,a novel Discrete-Variation Self-Attention(DVSA)mechanism,and a type-aware mixture of experts(T-MOE)framework.The SG filter is designed to reduce noise and enhance the feature representation of input data.The DVSA mechanism is proposed to optimize the selection of critical features to reduce computational complexity.The T-MOE framework is designed to adjust the model structure based on different resource characteristics,thereby improving prediction accuracy and adaptability.Experimental results show that our proposed SDVformer significantly outperforms baseline models,including Recurrent Neural Network(RNN),Long Short-Term Memory(LSTM),and Informer in terms of prediction precision,on both the Alibaba public dataset and the dataset collected by Beijing Jiaotong University(BJTU).Particularly compared with the Informer model,the average Mean Squared Error(MSE)of SDVformer decreases by about 80%,fully demonstrating its advantages in complex time series prediction tasks in cloud computing systems.展开更多
Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves ...Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves resource allocation techniques is host load prediction.This difficulty means that hardware resource allocation in cloud computing still results in hosting initialization issues,which add several minutes to response times.To solve this issue and accurately predict cloud capacity,cloud data centers use prediction algorithms.This permits dynamic cloud scalability while maintaining superior service quality.For host prediction,we therefore present a hybrid convolutional neural network long with short-term memory model in this work.First,the suggested hybrid model is input is subjected to the vector auto regression technique.The data in many variables that,prior to analysis,has been filtered to eliminate linear interdependencies.After that,the persisting data are processed and sent into the convolutional neural network layer,which gathers intricate details about the utilization of each virtual machine and central processing unit.The next step involves the use of extended short-term memory,which is suitable for representing the temporal information of irregular trends in time series components.The key to the entire process is that we used the most appropriate activation function for this type of model a scaled polynomial constant unit.Cloud systems require accurate prediction due to the increasing degrees of unpredictability in data centers.Because of this,two actual load traces were used in this study’s assessment of the performance.An example of the load trace is in the typical dispersed system.In comparison to CNN,VAR-GRU,VAR-MLP,ARIMA-LSTM,and other models,the experiment results demonstrate that our suggested approach offers state-of-the-art performance with higher accuracy in both datasets.展开更多
The rapid advancement of technology has paved the way for innovative approaches to education.Artificial intelligence(AI),the Internet of Things(IoT),and cloud computing are three transformative technologies reshaping ...The rapid advancement of technology has paved the way for innovative approaches to education.Artificial intelligence(AI),the Internet of Things(IoT),and cloud computing are three transformative technologies reshaping how education is delivered,accessed,and experienced.These technologies enable personalized learning,optimize teaching processes,and make educational resources more accessible to learners worldwide.This paper examines the integration of these technologies into smart education systems,highlighting their applications,benefits,and challenges,and exploring their potential to bridge gaps in educational equity and inclusivity.展开更多
Cloud computing(CC) provides infrastructure,storage services,and applications to the users that should be secured by some procedures or policies.Security in the cloud environment becomes essential to safeguard infrast...Cloud computing(CC) provides infrastructure,storage services,and applications to the users that should be secured by some procedures or policies.Security in the cloud environment becomes essential to safeguard infrastructure and user information from unauthorized access by implementing timely intrusion detection systems(IDS).Ensemble learning harnesses the collective power of multiple machine learning(ML) methods with feature selection(FS)process aids to progress the sturdiness and overall precision of intrusion detection.Therefore,this article presents a meta-heuristic feature selection by ensemble learning-based anomaly detection(MFS-ELAD)algorithm for the CC platforms.To realize this objective,the proposed approach utilizes a min-max standardization technique.Then,higher dimensionality features are decreased by Prairie Dogs Optimizer(PDO) algorithm.For the recognition procedure,the MFS-ELAD method emulates a group of 3 DL techniques such as sparse auto-encoder(SAE),stacked long short-term memory(SLSTM),and Elman neural network(ENN) algorithms.Eventually,the parameter fine-tuning of the DL algorithms occurs utilizing the sand cat swarm optimizer(SCSO) approach that helps in improving the recognition outcomes.The simulation examination of MFS-ELAD system on the CSE-CIC-IDS2018 dataset exhibits its promising performance across another method using a maximal precision of 99.71%.展开更多
The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework t...The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network(QT-DNN)with Binary Bird Swarm Optimization(BBSO)to enhance resource allocation while preserving Quality of Service(QoS).In contrast to conventional approaches,the QT-DNN accurately predicts task-resource mappings using tensor-based task representation,significantly minimizing computing overhead.The BBSO allocates resources dynamically,optimizing energy efficiency and task distribution.Experimental results from extensive simulations indicate the efficacy of the suggested strategy;the proposed approach demonstrates the highest level of accuracy,reaching 98.1%.This surpasses the GA-SVM model,which achieves an accuracy of 96.3%,and the ART model,which achieves an accuracy of 95.4%.The proposed method performs better in terms of response time with 1.598 as compared to existing methods Energy-Focused Dynamic Task Scheduling(EFDTS)and Federated Energy-efficient Scheduler for Task Allocation in Large-scale environments(FESTAL)with 2.31 and 2.04,moreover,the proposed method performs better in terms of makespan with 12 as compared to Round Robin(RR)and Recurrent Attention-based Summarization Algorithm(RASA)with 20 and 14.The hybrid method establishes a new standard for sustainable and efficient administration of cloud computing resources by explicitly addressing scalability and real-time performance.展开更多
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n...The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.展开更多
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource...The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy i...As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads.展开更多
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How...Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.展开更多
Infrastructure as a Service(IaaS)in cloud computing enables flexible resource distribution over the Internet,but achieving optimal scheduling remains a challenge.Effective resource allocation in cloud-based environmen...Infrastructure as a Service(IaaS)in cloud computing enables flexible resource distribution over the Internet,but achieving optimal scheduling remains a challenge.Effective resource allocation in cloud-based environments,particularly within the IaaS model,poses persistent challenges.Existing methods often struggle with slow opti-mization,imbalanced workload distribution,and inefficient use of available assets.These limitations result in longer processing times,increased operational expenses,and inadequate resource deployment,particularly under fluctuating demands.To overcome these issues,a novel Clustered Input-Oriented Salp Swarm Algorithm(CIOSSA)is introduced.This approach combines two distinct strategies:Task Splitting Agglomerative Clustering(TSAC)with an Input Oriented Salp Swarm Algorithm(IOSSA),which prioritizes tasks based on urgency,and a refined multi-leader model that accelerates optimization processes,enhancing both speed and accuracy.By continuously assessing system capacity before task distribution,the model ensures that assets are deployed effectively and costs are controlled.The dual-leader technique expands the potential solution space,leading to substantial gains in processing speed,cost-effectiveness,asset efficiency,and system throughput,as demonstrated by comprehensive tests.As a result,the suggested model performs better than existing approaches in terms of makespan,resource utilisation,throughput,and convergence speed,demonstrating that CIOSSA is scalable,reliable,and appropriate for the dynamic settings found in cloud computing.展开更多
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall...Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing o...Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.展开更多
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led...Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.展开更多
This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of inte...This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.展开更多
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo...Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.展开更多
This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Provinc...This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Province,China,thereby promoting the stable and sustainable development of the tourism industry,combining the laws of tourism market development,vigorously constructing a smart tourism project,guiding tourism cloud service providers to strengthen the cooperation and contact with the market’s tourism enterprises,introducing and utilizing cloud computing technology,optimizing and improving the functions of various tourism services of the enterprises,and enhancing the processing and analysis of enterprise-related data to provide tourism information.Strengthen the processing and analysis of enterprise-related data to provide tourism information,and further study the adoption of cloud computing and its impact on small and medium-sized enterprises(SMEs)in terms of technology and business environment knowledge,so as to make the best enterprise management decisions and realize the overall enhancement of the enterprise’s tourism brand value.展开更多
文摘The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks.
文摘Maintaining high-quality service supply and sustainability in modern cloud computing is essential to ensuring optimal system performance and energy efficiency.A novel approach is introduced in this study to decrease a system's overall delay and energy consumption by using a deep reinforcement learning(DRL)model to predict and allocate incoming workloads flexibly.The proposed methodology integrates workload prediction utilising long short-term memory(LSTM)networks with efficient load-balancing techniques led by deep Q-learning and Actor-critic algorithms.By continuously analysing current and historical data,the model can efficiently allocate resources,prioritizing speed and energy preservation.The experimental results demonstrate that our load balancing system,which utilises DRL,significantly reduces average response times and energy usage compared to traditional methods.This approach provides a scalable and adaptable strategy for enhancing cloud infrastructure performance.It consistently provides reliable and durable performance across a range of dynamic workloads.
文摘Accurate prediction of cloud resource utilization is critical.It helps improve service quality while avoiding resource waste and shortages.However,the time series of resource usage in cloud computing systems often exhibit multidimensionality,nonlinearity,and high volatility,making the high-precision prediction of resource utilization a complex and challenging task.At present,cloud computing resource prediction methods include traditional statistical models,hybrid approaches combining machine learning and classical models,and deep learning techniques.Traditional statistical methods struggle with nonlinear predictions,hybrid methods face challenges in feature extraction and long-term dependencies,and deep learning methods incur high computational costs.The above methods are insufficient to achieve high-precision resource prediction in cloud computing systems.Therefore,we propose a new time series prediction model,called SDVformer,which is based on the Informer model by integrating the Savitzky-Golay(SG)filters,a novel Discrete-Variation Self-Attention(DVSA)mechanism,and a type-aware mixture of experts(T-MOE)framework.The SG filter is designed to reduce noise and enhance the feature representation of input data.The DVSA mechanism is proposed to optimize the selection of critical features to reduce computational complexity.The T-MOE framework is designed to adjust the model structure based on different resource characteristics,thereby improving prediction accuracy and adaptability.Experimental results show that our proposed SDVformer significantly outperforms baseline models,including Recurrent Neural Network(RNN),Long Short-Term Memory(LSTM),and Informer in terms of prediction precision,on both the Alibaba public dataset and the dataset collected by Beijing Jiaotong University(BJTU).Particularly compared with the Informer model,the average Mean Squared Error(MSE)of SDVformer decreases by about 80%,fully demonstrating its advantages in complex time series prediction tasks in cloud computing systems.
基金funded by Multimedia University(Ref:MMU/RMC/PostDoc/NEW/2024/9804).
文摘Networking,storage,and hardware are just a few of the virtual computing resources that the infrastruc-ture service model offers,depending on what the client needs.One essential aspect of cloud computing that improves resource allocation techniques is host load prediction.This difficulty means that hardware resource allocation in cloud computing still results in hosting initialization issues,which add several minutes to response times.To solve this issue and accurately predict cloud capacity,cloud data centers use prediction algorithms.This permits dynamic cloud scalability while maintaining superior service quality.For host prediction,we therefore present a hybrid convolutional neural network long with short-term memory model in this work.First,the suggested hybrid model is input is subjected to the vector auto regression technique.The data in many variables that,prior to analysis,has been filtered to eliminate linear interdependencies.After that,the persisting data are processed and sent into the convolutional neural network layer,which gathers intricate details about the utilization of each virtual machine and central processing unit.The next step involves the use of extended short-term memory,which is suitable for representing the temporal information of irregular trends in time series components.The key to the entire process is that we used the most appropriate activation function for this type of model a scaled polynomial constant unit.Cloud systems require accurate prediction due to the increasing degrees of unpredictability in data centers.Because of this,two actual load traces were used in this study’s assessment of the performance.An example of the load trace is in the typical dispersed system.In comparison to CNN,VAR-GRU,VAR-MLP,ARIMA-LSTM,and other models,the experiment results demonstrate that our suggested approach offers state-of-the-art performance with higher accuracy in both datasets.
文摘The rapid advancement of technology has paved the way for innovative approaches to education.Artificial intelligence(AI),the Internet of Things(IoT),and cloud computing are three transformative technologies reshaping how education is delivered,accessed,and experienced.These technologies enable personalized learning,optimize teaching processes,and make educational resources more accessible to learners worldwide.This paper examines the integration of these technologies into smart education systems,highlighting their applications,benefits,and challenges,and exploring their potential to bridge gaps in educational equity and inclusivity.
文摘Cloud computing(CC) provides infrastructure,storage services,and applications to the users that should be secured by some procedures or policies.Security in the cloud environment becomes essential to safeguard infrastructure and user information from unauthorized access by implementing timely intrusion detection systems(IDS).Ensemble learning harnesses the collective power of multiple machine learning(ML) methods with feature selection(FS)process aids to progress the sturdiness and overall precision of intrusion detection.Therefore,this article presents a meta-heuristic feature selection by ensemble learning-based anomaly detection(MFS-ELAD)algorithm for the CC platforms.To realize this objective,the proposed approach utilizes a min-max standardization technique.Then,higher dimensionality features are decreased by Prairie Dogs Optimizer(PDO) algorithm.For the recognition procedure,the MFS-ELAD method emulates a group of 3 DL techniques such as sparse auto-encoder(SAE),stacked long short-term memory(SLSTM),and Elman neural network(ENN) algorithms.Eventually,the parameter fine-tuning of the DL algorithms occurs utilizing the sand cat swarm optimizer(SCSO) approach that helps in improving the recognition outcomes.The simulation examination of MFS-ELAD system on the CSE-CIC-IDS2018 dataset exhibits its promising performance across another method using a maximal precision of 99.71%.
文摘The swift expansion of cloud computing has heightened the demand for energy-efficient and high-performance resource allocation solutions across extensive systems.This research presents an innovative hybrid framework that combines a Quantum Tensor-based Deep Neural Network(QT-DNN)with Binary Bird Swarm Optimization(BBSO)to enhance resource allocation while preserving Quality of Service(QoS).In contrast to conventional approaches,the QT-DNN accurately predicts task-resource mappings using tensor-based task representation,significantly minimizing computing overhead.The BBSO allocates resources dynamically,optimizing energy efficiency and task distribution.Experimental results from extensive simulations indicate the efficacy of the suggested strategy;the proposed approach demonstrates the highest level of accuracy,reaching 98.1%.This surpasses the GA-SVM model,which achieves an accuracy of 96.3%,and the ART model,which achieves an accuracy of 95.4%.The proposed method performs better in terms of response time with 1.598 as compared to existing methods Energy-Focused Dynamic Task Scheduling(EFDTS)and Federated Energy-efficient Scheduler for Task Allocation in Large-scale environments(FESTAL)with 2.31 and 2.04,moreover,the proposed method performs better in terms of makespan with 12 as compared to Round Robin(RR)and Recurrent Attention-based Summarization Algorithm(RASA)with 20 and 14.The hybrid method establishes a new standard for sustainable and efficient administration of cloud computing resources by explicitly addressing scalability and real-time performance.
文摘The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.
文摘The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
文摘As the extensive use of cloud computing raises questions about the security of any personal data stored there,cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment.A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware.The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment.An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance;Each hypervisor should be examined to meet specific needs.The main objective of this study is to provide accurate results to compare the performance of Hyper-V and Kernel-based Virtual Machine(KVM)while implementing different cryptographic algorithms to guide cloud service providers and end users in choosing the most suitable hypervisor for their cryptographic needs.This study evaluated the efficiency of two hypervisors,Hyper-V and KVM,in implementing six cryptographic algorithms:Rivest,Shamir,Adleman(RSA),Advanced Encryption Standard(AES),Triple Data Encryption Standard(TripleDES),Carlisle Adams and Stafford Tavares(CAST-128),BLOWFISH,and TwoFish.The study’s findings show that KVM outperforms Hyper-V,with 12.2%less Central Processing Unit(CPU)use and 12.95%less time overall for encryption and decryption operations with various file sizes.The study’s findings emphasize how crucial it is to pick a hypervisor that is appropriate for cryptographic needs in a cloud environment,which could assist both cloud service providers and end users.Future research may focus more on how various hypervisors perform while handling cryptographic workloads.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost.
文摘Infrastructure as a Service(IaaS)in cloud computing enables flexible resource distribution over the Internet,but achieving optimal scheduling remains a challenge.Effective resource allocation in cloud-based environments,particularly within the IaaS model,poses persistent challenges.Existing methods often struggle with slow opti-mization,imbalanced workload distribution,and inefficient use of available assets.These limitations result in longer processing times,increased operational expenses,and inadequate resource deployment,particularly under fluctuating demands.To overcome these issues,a novel Clustered Input-Oriented Salp Swarm Algorithm(CIOSSA)is introduced.This approach combines two distinct strategies:Task Splitting Agglomerative Clustering(TSAC)with an Input Oriented Salp Swarm Algorithm(IOSSA),which prioritizes tasks based on urgency,and a refined multi-leader model that accelerates optimization processes,enhancing both speed and accuracy.By continuously assessing system capacity before task distribution,the model ensures that assets are deployed effectively and costs are controlled.The dual-leader technique expands the potential solution space,leading to substantial gains in processing speed,cost-effectiveness,asset efficiency,and system throughput,as demonstrated by comprehensive tests.As a result,the suggested model performs better than existing approaches in terms of makespan,resource utilisation,throughput,and convergence speed,demonstrating that CIOSSA is scalable,reliable,and appropriate for the dynamic settings found in cloud computing.
基金jointly supported by the Jiangsu Postgraduate Research and Practice Innovation Project under Grant KYCX22_1030,SJCX22_0283 and SJCX23_0293the NUPTSF under Grant NY220201.
文摘Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.
文摘Cloud computing is the new norm within business entities as businesses try to keep up with technological advancements and user needs. The concept is defined as a computing environment allowing for remote outsourcing of storage and computing resources. A hybrid cloud environment is an excellent example of cloud computing. Specifically, the hybrid system provides organizations with increased scalability and control over their data and support for a remote workforce. However, hybrid cloud systems are expensive as organizations operate different infrastructures while introducing complexity to the organization’s activities. Data security is critical among the most vital concerns that have resulted from the use of cloud computing, thus, affecting the rate of user adoption and acceptance. This article, borrowing from the hybrid cloud computing system, recommends combining traditional and modern data security systems. Traditional data security systems have proven effective in their respective roles, with the main challenge arising from their recognition of context and connectivity. Therefore, integrating traditional and modern designs is recommended to enhance effectiveness, context, connectivity, and efficiency.
文摘Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.
文摘This study investigates how cybersecurity can be enhanced through cloud computing solutions in the United States. The motive for this study is due to the rampant loss of data, breaches, and unauthorized access of internet criminals in the United States. The study adopted a survey research design, collecting data from 890 cloud professionals with relevant knowledge of cybersecurity and cloud computing. A machine learning approach was adopted, specifically a random forest classifier, an ensemble, and a decision tree model. Out of the features in the data, ten important features were selected using random forest feature importance, which helps to achieve the objective of the study. The study’s purpose is to enable organizations to develop suitable techniques to prevent cybercrime using random forest predictions as they relate to cloud services in the United States. The effectiveness of the models used is evaluated by utilizing validation matrices that include recall values, accuracy, and precision, in addition to F1 scores and confusion matrices. Based on evaluation scores (accuracy, precision, recall, and F1 scores) of 81.9%, 82.6%, and 82.1%, the results demonstrated the effectiveness of the random forest model. It showed the importance of machine learning algorithms in preventing cybercrime and boosting security in the cloud environment. It recommends that other machine learning models be adopted to see how to improve cybersecurity through cloud computing.
文摘Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.
文摘This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Province,China,thereby promoting the stable and sustainable development of the tourism industry,combining the laws of tourism market development,vigorously constructing a smart tourism project,guiding tourism cloud service providers to strengthen the cooperation and contact with the market’s tourism enterprises,introducing and utilizing cloud computing technology,optimizing and improving the functions of various tourism services of the enterprises,and enhancing the processing and analysis of enterprise-related data to provide tourism information.Strengthen the processing and analysis of enterprise-related data to provide tourism information,and further study the adoption of cloud computing and its impact on small and medium-sized enterprises(SMEs)in terms of technology and business environment knowledge,so as to make the best enterprise management decisions and realize the overall enhancement of the enterprise’s tourism brand value.