This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadc...This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.展开更多
In view of the influence of model errors in conventional BeiDou prediction models for clock offsets,a semiparametric adjustment model for BeiDou Navigation Satellite System(BDS)clock offset prediction that considers m...In view of the influence of model errors in conventional BeiDou prediction models for clock offsets,a semiparametric adjustment model for BeiDou Navigation Satellite System(BDS)clock offset prediction that considers model errors is proposed in this paper.First,the model errors of the conventional BeiDou clock offset prediction model are analyzed.Additionally,the relationship among the polynomial model,polynomial model with additional periodic term correction,and its periodic correction terms is explored in detail.Second,considering the model errors,combined with the physical relationship between phase,frequency,frequency drift,and its period in the clock sequence,the conventional clock offset prediction model is improved.Using kernel estimation and comprehensive least squares,the corresponding parameter solutions of the prediction model and the estimation of its model error are derived,and the dynamic error correction of the clock sequence model is realized.Finally,the BDS satellite precision clock data provided by the IGS Center of Wuhan University with a sampling interval of 5 min are used to compare the proposed prediction method with commonly used methods.Experimental results show that the proposed prediction method can better correct the model errors of BDS satellite clock offsets,and it can effectively overcome the inaccuracies of clock offset correction.The average forecast accuracies of the BeiDou satellites at 6,12,and 24 h are 27.13%,37.71%,and 45.08%higher than those of the conventional BeiDou clock offset forecast models;the average model improvement rates are 16.92%,20.96%,and 28.48%,respectively.In addition,the proposed method enhances the existing BDS satellite prediction method for clock offsets to a certain extent.展开更多
随着GNSS的不断发展,基于精密单点定位(precise point positioning,PPP)技术的高精度时间传递研究已成为时频领域的关键技术之一.本文以北斗三号系统解算接收机钟差为研究对象,分析了无电离层(ionospheric-free,IF)组合和非组合(uncombi...随着GNSS的不断发展,基于精密单点定位(precise point positioning,PPP)技术的高精度时间传递研究已成为时频领域的关键技术之一.本文以北斗三号系统解算接收机钟差为研究对象,分析了无电离层(ionospheric-free,IF)组合和非组合(uncombined,UC)PPP模型对时间传递的影响.首先推导了两种PPP数学模型差异,选取2024年年积日第79~81天的BRUX和USN7两个外接氢原子钟测站观测数据进行分析.结果表明:两种PPP模型解算的接收机钟差差值在0.15 ns内波动,修正的Allan方差数值接近;对BRUX-USN7时间链路对比分析,3天内时间传递结果均在0.8 ns内波动,两种模型解算钟差修正的Allan方差数值近似.综上,两种PPP模型虽然钟差数值解算的理论模型不同,但在钟差解算和时间传递方面无明显差异,非组合模型可以用来进行时间传递且在保留电离层信息方面更具有优势.展开更多
针对北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)精密单点定位(precise point positioning,PPP)服务PPP-B2b在同一时刻可用于PPP的卫星数量有限,以及其实时钟差解算评估研究较少的问题,本文提出了一种基于BDS PPP-B2b与G...针对北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)精密单点定位(precise point positioning,PPP)服务PPP-B2b在同一时刻可用于PPP的卫星数量有限,以及其实时钟差解算评估研究较少的问题,本文提出了一种基于BDS PPP-B2b与Galileo高精度服务(high accuracy service,HAS)融合的改进方案,并对其实时钟差解算性能进行了系统性评估.该方法利用两个卫星系统的PPP服务改正数进行融合,显著提升了同一时刻内可用卫星数量.相较于单一PPP-B2b服务方案,在钟差解算的精度和稳定性方面具有明显提升.同时,实验结果表明,该方法在经过一定时间的收敛后,其性能优于德国波兹坦地学研究中心(German Research Centre for Geosciences,GFZ)提供的超快速(UTL)产品.因此,本文不仅为提高PPP-B2b服务的实际应用能力提供了有效途径,也为多系统融合下的实时时间解算方法设计与性能优化提供了新的思路和实验验证.展开更多
Global Positioning System (GPS) is a satellite-based navigation system that provides a three-dimensional user position (x,y,z), velocity and time anywhere on or above the earth surface. The satellite-based position ac...Global Positioning System (GPS) is a satellite-based navigation system that provides a three-dimensional user position (x,y,z), velocity and time anywhere on or above the earth surface. The satellite-based position accuracy is affected by several factors such as satellite clock error, propagation path delays and receiver noise due to which the GPS does not meet the requirements of critical navigation applications such as missile navigation and category I/II/III aircraft landings. This paper emphasizes on modelling the satellite clock error and orbital solution (satellite position) error considering the signal emission time. The transmission time sent by each satellite in broadcast ephemerides is not accurate. This has to be corrected in order to obtain correct satellite position and in turn a precise receiver position. Signal transmission time or broadcast time from satellite antenna phase center is computed at the receiver using several parameters such as signal reception time, propagation time, pseudorange observed and satellite clock error correction parameters. This corrected time of transmission and broadcast orbital parameters are used for estimation of the orbital solution. The estimated orbital solution was validated with the precise ephemerides which are estimated by Jet Propulsion Laboratory (JPL), USA. The errors are estimated for a typical day data collected on 11th March 2011 from dual frequency GPS receiver located at Department of Electronics and Communication Engineering, Andhra University College of Engineering, Visakhapatnam (17.73°N/83.319°E).展开更多
为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消...为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61571452 and No.61201331
文摘This paper presents a source localization algorithm based on the source signal's time-difference-of-arrival(TDOA) for asynchronous wireless sensor network.To obtain synchronization among anchors,all anchors broadcast signals periodically,the clock offsets and skews of anchor pairs can be estimated using broadcasting signal's time-of-arrivals(TOA) at anchors.A kalman filter is adopted to improve the accuracy of clock offsets and track the clock drifts due to random fluctuations.Once the source transmits signal,the TOAs at anchors are stamped respectively and source's TDOA error due to clock offset and skew of anchor pair can be mitigated by a compensation operation.Based on a Gaussian noise model,maximum likelihood estimation(MLE) for the source position is obtained.Performance issues are addressed by evaluating the Cramer-Rao lower bound and the selection of broadcasting period.The proposed algorithm is simple and effective,which has close performance with synchronous TDOA algorithm.
基金China University of Geosciences,Wuhan(CN)(Grant No.41374017).
文摘In view of the influence of model errors in conventional BeiDou prediction models for clock offsets,a semiparametric adjustment model for BeiDou Navigation Satellite System(BDS)clock offset prediction that considers model errors is proposed in this paper.First,the model errors of the conventional BeiDou clock offset prediction model are analyzed.Additionally,the relationship among the polynomial model,polynomial model with additional periodic term correction,and its periodic correction terms is explored in detail.Second,considering the model errors,combined with the physical relationship between phase,frequency,frequency drift,and its period in the clock sequence,the conventional clock offset prediction model is improved.Using kernel estimation and comprehensive least squares,the corresponding parameter solutions of the prediction model and the estimation of its model error are derived,and the dynamic error correction of the clock sequence model is realized.Finally,the BDS satellite precision clock data provided by the IGS Center of Wuhan University with a sampling interval of 5 min are used to compare the proposed prediction method with commonly used methods.Experimental results show that the proposed prediction method can better correct the model errors of BDS satellite clock offsets,and it can effectively overcome the inaccuracies of clock offset correction.The average forecast accuracies of the BeiDou satellites at 6,12,and 24 h are 27.13%,37.71%,and 45.08%higher than those of the conventional BeiDou clock offset forecast models;the average model improvement rates are 16.92%,20.96%,and 28.48%,respectively.In addition,the proposed method enhances the existing BDS satellite prediction method for clock offsets to a certain extent.
文摘随着GNSS的不断发展,基于精密单点定位(precise point positioning,PPP)技术的高精度时间传递研究已成为时频领域的关键技术之一.本文以北斗三号系统解算接收机钟差为研究对象,分析了无电离层(ionospheric-free,IF)组合和非组合(uncombined,UC)PPP模型对时间传递的影响.首先推导了两种PPP数学模型差异,选取2024年年积日第79~81天的BRUX和USN7两个外接氢原子钟测站观测数据进行分析.结果表明:两种PPP模型解算的接收机钟差差值在0.15 ns内波动,修正的Allan方差数值接近;对BRUX-USN7时间链路对比分析,3天内时间传递结果均在0.8 ns内波动,两种模型解算钟差修正的Allan方差数值近似.综上,两种PPP模型虽然钟差数值解算的理论模型不同,但在钟差解算和时间传递方面无明显差异,非组合模型可以用来进行时间传递且在保留电离层信息方面更具有优势.
文摘针对北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)精密单点定位(precise point positioning,PPP)服务PPP-B2b在同一时刻可用于PPP的卫星数量有限,以及其实时钟差解算评估研究较少的问题,本文提出了一种基于BDS PPP-B2b与Galileo高精度服务(high accuracy service,HAS)融合的改进方案,并对其实时钟差解算性能进行了系统性评估.该方法利用两个卫星系统的PPP服务改正数进行融合,显著提升了同一时刻内可用卫星数量.相较于单一PPP-B2b服务方案,在钟差解算的精度和稳定性方面具有明显提升.同时,实验结果表明,该方法在经过一定时间的收敛后,其性能优于德国波兹坦地学研究中心(German Research Centre for Geosciences,GFZ)提供的超快速(UTL)产品.因此,本文不仅为提高PPP-B2b服务的实际应用能力提供了有效途径,也为多系统融合下的实时时间解算方法设计与性能优化提供了新的思路和实验验证.
文摘Global Positioning System (GPS) is a satellite-based navigation system that provides a three-dimensional user position (x,y,z), velocity and time anywhere on or above the earth surface. The satellite-based position accuracy is affected by several factors such as satellite clock error, propagation path delays and receiver noise due to which the GPS does not meet the requirements of critical navigation applications such as missile navigation and category I/II/III aircraft landings. This paper emphasizes on modelling the satellite clock error and orbital solution (satellite position) error considering the signal emission time. The transmission time sent by each satellite in broadcast ephemerides is not accurate. This has to be corrected in order to obtain correct satellite position and in turn a precise receiver position. Signal transmission time or broadcast time from satellite antenna phase center is computed at the receiver using several parameters such as signal reception time, propagation time, pseudorange observed and satellite clock error correction parameters. This corrected time of transmission and broadcast orbital parameters are used for estimation of the orbital solution. The estimated orbital solution was validated with the precise ephemerides which are estimated by Jet Propulsion Laboratory (JPL), USA. The errors are estimated for a typical day data collected on 11th March 2011 from dual frequency GPS receiver located at Department of Electronics and Communication Engineering, Andhra University College of Engineering, Visakhapatnam (17.73°N/83.319°E).
文摘为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。