期刊文献+
共找到91,048篇文章
< 1 2 250 >
每页显示 20 50 100
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS的女贞子酒蒸前后血清药物化学对比分析
1
作者 刘昊霖 郑历史 +3 位作者 孙淑仃 赵迪 李焕茹 冯素香 《中华中医药学刊》 北大核心 2026年第1期175-186,I0027,共13页
目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提... 目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提液后血清中的移行成分进行对比分析。方法雄性Sprague-Dawley(SD)大鼠随机分为空白组、女贞子组(10.8 g·kg^(-1)·d^(-1))和酒女贞子组(10.8 g·kg^(-1)·d^(-1)),每组6只,给药组分别灌胃给予女贞子、酒女贞子水提液,空白组灌胃等体积纯净水,早晚各1次,连续5 d,末次给药1 h后腹主动脉取血,制备血清样品。采用Accucore^(TM) C_(18)(100 mm×2.1 mm,2.6μm)色谱柱,流动相为乙腈(A)-0.1%甲酸水(B),梯度洗脱(0~5 min,95%B→85%B;5~10 min,85%B→73%B;10~24 min,73%B→15%B),流速0.2 mL·min^(-1),进样量5μL,正、负离子模式扫描,扫描范围m/z 120~1200。采用Compound Discoverer 3.3软件,根据质谱数据和相关文献对女贞子、酒女贞子入血原型成分和代谢产物进行分析鉴定;采用多元统计分析方法对比女贞子、酒女贞子含药血清间的差异性成分。结果在给予女贞子水提液大鼠血清中共鉴定得到64个入血成分,包括40个原型成分和24个代谢产物;在给予酒女贞子水提液大鼠血清中共鉴定得到57个入血成分,包括35个原型成分和22个代谢产物。原型成分主要包括苯乙醇苷类、环烯醚萜类、三萜类、黄酮类等,代谢途径主要包括羟基化、甲基化、葡萄糖醛酸化等。根据变量重要性投影(variable importance in projection,VIP)值>1,t检验(Student's t test)结果P<0.05筛选出特女贞苷、女贞苷酸等12个差异性入血成分,其中7个原型成分、5个代谢产物。结论女贞子酒蒸后血清移行成分发生明显改变,可为阐明女贞子、酒女贞子药效物质基础提供理论依据。 展开更多
关键词 女贞子 炮制 血清药物化学 UPLC-Orbitrap fusion Lumos Tribrid-MS 多元统计分析
原文传递
Effect of Addition of Er-TiB_(2)Dual-Phase Nanoparticles on Strength-Ductility of Al-Mn-Mg-Sc-Zr Alloy Prepared by Laser Powder Bed Fusion
2
作者 Li Suli Zhang Yanze +5 位作者 Yang Mengjia Zhang Longbo Xie Qidong Yang Laixia MaoFeng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期9-17,共9页
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w... A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively. 展开更多
关键词 Al-Mn-Mg-Sc-Zr alloy laser powder bed fusion nano-reinforcing phase synergistic enhancement
原文传递
Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer
3
作者 Yingyong Zou Yu Zhang +2 位作者 Long Li Tao Liu Xingkui Zhang 《Computers, Materials & Continua》 2026年第1期1587-1610,共24页
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect... Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis. 展开更多
关键词 MULTI-MODAL GRU swin-transformer CBAM CNN feature fusion
在线阅读 下载PDF
Trajectory and influencing factors of changes in anxiety and depression in elderly patients after lumbar interbody fusion
4
作者 Xiao-Feng Liu Yan-Hua Wu +4 位作者 Guang-Xi Huang Bin Yu Hui-Juan Xu Meng-Hua Qiu Lin Kang 《World Journal of Psychiatry》 2026年第1期312-321,共10页
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery... BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life. 展开更多
关键词 Lumbar interbody fusion Elderly patients ANXIETY DEPRESSION Trajectory of change Influencing factors
暂未订购
Cephalomedullary fusion nails for treatment of infected stemmed revision total knee arthroplasty:Four case reports
5
作者 Gregory M Georgiadis Isaac A Arefi +3 位作者 Summer M Drees Ajay Nair Drew Wagner Austin C Lawrence 《World Journal of Orthopedics》 2026年第1期189-196,共8页
BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is ... BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees. 展开更多
关键词 Knee fusion Knee arthrodesis Intramedullary nail Cephalomedullary nail Total knee infection Case report
暂未订购
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
6
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 fusion algorithm
在线阅读 下载PDF
Knowledge discovery method for feature-decision level fusion of multiple classifiers 被引量:1
7
作者 孙亮 韩崇昭 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期222-227,共6页
To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different featur... To improve the performance of the multiple classifier system, a new method of feature-decision level fusion is proposed based on knowledge discovery. In the new method, the base classifiers operate on different feature spaces and their types depend on different measures of between-class separability. The uncertainty measures corresponding to each output of each base classifier are induced from the established decision tables (DTs) in the form of mass function in the Dempster-Shafer theory (DST). Furthermore, an effective fusion framework is built at the feature-decision level on the basis of a generalized rough set model and the DST. The experiment for the classification of hyperspectral remote sensing images shows that the performance of the classification can be improved by the proposed method compared with that of plurality voting (PV). 展开更多
关键词 multiple classifier fusion knowledge discovery Dempster-Shafer theory generalized rough set HYPERSPECTRAL
在线阅读 下载PDF
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS、网络药理学与实验验证的正骨紫金丸活性成分及作用机制研究
8
作者 冯志毅 孙淑仃 +3 位作者 郑历史 孙琪 刘泽 冯素香 《中国现代应用药学》 北大核心 2025年第21期3704-3716,共13页
目的基于UPLC-Orbitrap Fusion Lumos Tribrid-MS联合网络药理学与实验验证预测正骨紫金丸活血化瘀的活性成分及其作用机制。方法首先,采用UPLC-Orbitrap Fusion Lumos Tribrid-MS快速表征正骨紫金丸中的化学成分;其次,通过网络药理学... 目的基于UPLC-Orbitrap Fusion Lumos Tribrid-MS联合网络药理学与实验验证预测正骨紫金丸活血化瘀的活性成分及其作用机制。方法首先,采用UPLC-Orbitrap Fusion Lumos Tribrid-MS快速表征正骨紫金丸中的化学成分;其次,通过网络药理学的研究方法构建“药物-成分-靶点”网络,获取关键靶点及主要活性成分,结合String平台与CytoScape软件构建蛋白质-蛋白质相互作用(protein-protein interaction,PPI)网络,通过MateScape数据库富集分析通路,利用DiscoVery Studio 4.5软件进行分子对接验证;最后,建立急性软组织损伤动物模型,以急性软组织损伤评分与全血黏度为药效学指标开展药效学研究。结果正骨紫金丸中共鉴定出包括黄酮类、生物碱类、有机酸类和香豆素类等化合物67个,其中大黄素、藁本内酯、肉桂酸、水杨酸、芦荟大黄素可能为正骨紫金丸活血化瘀的主要活性成分。PPI网络拓扑分析得到TNF、ALB、AKT1等26个核心靶点,KEGG富集分析表明正骨紫金丸主要通过调控TNF、PI3K-Akt、NF-κB等信号通路发挥活血化瘀作用,分子对接结果显示正骨紫金丸主要活性成分与关键靶点结合良好,药效学结果表明正骨紫金丸可显著降低急性软组织损伤大鼠的全血黏度。结论本研究明确了正骨紫金丸活血化瘀的活性成分和作用机制,同时表明其可能通过作用于多靶点、多通路整体调节,共同发挥活血化瘀作用,为其后续深入研究提供参考。 展开更多
关键词 正骨紫金丸 UPLC-Orbitrap fusion Lumos Tribrid-MS 成分分析 网络药理学 活血化瘀
原文传递
Dynamic weighted voting for multiple classifier fusion:a generalized rough set method 被引量:9
9
作者 Sun Liang Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期487-494,共8页
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ... To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV). 展开更多
关键词 multiple classifier fusion dynamic weighted voting generalized rough set hyperspectral.
在线阅读 下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
10
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
在线阅读 下载PDF
CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION 被引量:1
11
作者 Yang Yi Han Chongzhao Han Deqiang 《Journal of Electronics(China)》 2009年第6期771-776,共6页
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest N... A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL),which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has relatively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function determination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective. 展开更多
关键词 Nearest Feature Line (NFL) Evidence combination classifier fusion Face recognition
在线阅读 下载PDF
基于Clickteam Fusion的HDB3/AMI编译码实验教学软件设计
12
作者 张春光 《电脑编程技巧与维护》 2025年第1期31-34,共4页
论文阐述了一种利用Clickteam Fusion引擎进行HDB3/AMI编译码实验仿真的编程方法。利用计算机技术开发的该仿真实验富有一定的真实感,可直接在计算机上模拟操作。通过学生自主操作,使其掌握光纤实验基本原理,记忆并理解相关操作知识,有... 论文阐述了一种利用Clickteam Fusion引擎进行HDB3/AMI编译码实验仿真的编程方法。利用计算机技术开发的该仿真实验富有一定的真实感,可直接在计算机上模拟操作。通过学生自主操作,使其掌握光纤实验基本原理,记忆并理解相关操作知识,有效提高实验学习效率。 展开更多
关键词 HDB3/AMI编译码实验 仿真 Clickteam fusion引擎
在线阅读 下载PDF
Gear Transmission Fault Classification using Deep Neural Networks and Classifier Level Sensor Fusion 被引量:8
13
作者 Min XIA Clarence W.DE SILVA 《Instrumentation》 2019年第2期101-109,共9页
Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working envir... Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors. 展开更多
关键词 FAULT Classification FAULT DIAGNOSIS Convolutional NEURAL Networks GEAR Transmission DECISION fusion
原文传递
Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach 被引量:1
14
作者 Fatma Taher Hamoud Alshammari +3 位作者 Lobna Osman Mohamed Elhoseny Abdulaziz Shehab Eman Elayat 《Computers, Materials & Continua》 SCIE EI 2023年第5期4485-4499,共15页
Cardiac diseases are one of the greatest global health challenges.Due to the high annual mortality rates,cardiac diseases have attracted the attention of numerous researchers in recent years.This article proposes a hy... Cardiac diseases are one of the greatest global health challenges.Due to the high annual mortality rates,cardiac diseases have attracted the attention of numerous researchers in recent years.This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases.The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms.An ensemble of classifiers is then applied to the fusion’s results.The proposed model classifies the arrhythmia dataset from the University of California,Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.Initially,at the preprocessing steps,for the miss-valued attributes,we used the average value in the linear attributes group by the same class and the most frequent value for nominal attributes.However,in order to ensure the model optimality,we eliminated all attributes which have zero or constant values that might bias the results of utilized classifiers.The preprocessing step led to 161 out of 279 attributes(features).Thereafter,a fuzzy-based feature-selection fusion method is applied to fuse high-ranked features obtained from different heuristic feature-selection algorithms.In short,our study comprises three main blocks:(1)sensing data and preprocessing;(2)feature queuing,selection,and extraction;and(3)the predictive model.Our proposed method improves classification performance in terms of accuracy,F1measure,recall,and precision when compared to state-of-the-art techniques.It achieves 98.5%accuracy for binary class mode and 98.9%accuracy for categorized class mode. 展开更多
关键词 CARDIAC ARRHYTHMIA PREPROCESSING missing values classification model fusion
暂未订购
Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier 被引量:8
15
作者 SU Hong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第3期282-287,共6页
为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合... 为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合理论的进化,含糊的集合也是嵌入的进它产生含糊的贝叶斯的最佳的分类器。它能同时从积极、反向的方向模仿模糊信息的双重的特征。进一步,贝叶斯的最佳的分类器也是的集合对从积极、反向、不确定的方面就模糊信息的三方面的特征而言求婚了。最后,一个知识库的人工的神经网络(KBANN ) 被介绍认识到贝叶斯的最佳的分类器的自动推理。它不仅减少贝叶斯的最佳的分类器的计算费用而且改进它学习质量的分类。 展开更多
关键词 模糊信息 混合方法 贝叶斯最佳分类器 自动推理 神经网络
在线阅读 下载PDF
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS的女贞子不同炮制品血中移行成分分析
16
作者 夏仪 孙淑仃 +3 位作者 郑历史 赵迪 李焕茹 冯素香 《中药材》 北大核心 2025年第3期606-615,共10页
目的:研究大鼠灌胃给药醋蒸女贞子、盐蒸女贞子、清蒸女贞子后血清中的移行成分并对其进行对比分析。方法:采用UPLC-Orbitrap Fusion Lumos Tribrid-MS技术,结合Xcalibur和Compound Discoverer软件,根据保留时间、精确分子量、二级碎片... 目的:研究大鼠灌胃给药醋蒸女贞子、盐蒸女贞子、清蒸女贞子后血清中的移行成分并对其进行对比分析。方法:采用UPLC-Orbitrap Fusion Lumos Tribrid-MS技术,结合Xcalibur和Compound Discoverer软件,根据保留时间、精确分子量、二级碎片信息及文献报道,鉴定女贞子不同炮制品的入血成分。基于主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)筛选女贞子不同炮制品含药血清的差异性成分。结果:共鉴定出95个入血成分,其中共有成分89个,醋蒸女贞子特有成分2个、盐蒸女贞子特有成分3个、清蒸女贞子特有成分1个。入血成分包含61个原型成分和34个代谢产物,原型成分主要包括苯乙醇类、环烯醚萜苷类、黄酮类化合物,代谢产物主要涉及羟基化、葡萄糖醛酸化、硫酸酯化反应等。PCA、OPLS-DA结果表明女贞子不同炮制品血中移行成分存在明显差异,OPLS-DA筛选出27个差异性成分。结论:该研究初步阐明了醋蒸女贞子、盐蒸女贞子、清蒸女贞子在大鼠血清中移行成分的差异,为进一步明确女贞子不同炮制品的药效物质基础提供了依据。 展开更多
关键词 女贞子 炮制 血清药物化学 UPLC-Orbitrap fusion Lumos Tribrid-MS 多元统计分析
原文传递
TFN-FICFM:sEMG-Based Gesture Recognition Using Temporal Fusion Network and Fuzzy Integral-based Classifier Fusion
17
作者 Fo Hu Kailun He +1 位作者 Mengyuan Qian Mohamed Amin Gouda 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1878-1891,共14页
Surface electromyography(sEMG)-based gesture recognition is a key technology in the field of human–computer interaction.However,existing gesture recognition methods face challenges in effectively integrating discrimi... Surface electromyography(sEMG)-based gesture recognition is a key technology in the field of human–computer interaction.However,existing gesture recognition methods face challenges in effectively integrating discriminative temporal feature representations from sEMG signals.In this paper,we propose a deep learning framework named TFN-FICFM comprises a Temporal Fusion Network(TFN)and Fuzzy Integral-Based Classifier Fusion method(FICFM)to improve the accuracy and robustness of gesture recognition.Firstly,we design a TFN module,which utilizes an attention-based recurrent multi-scale convolutional module to acquire multi-level temporal feature representations and achieves deep fusion of temporal features through a feature pyramid module.Secondly,the deep-fused temporal features are utilized to generate multiple sets of gesture category prediction confidences through a feedback loop.Finally,we employ FICFM to perform fuzzy fusion on prediction confidences,resulting in the ultimate decision.This study conducts extensive comparisons and ablation studies using the publicly available datasets Ninapro DB2 and DB5.Results demonstrate that the TFN-FICFM model outperforms state-of-the-art methods in classification performance.This research can serve as a benchmark for sEMG-based gesture recognition and related deep learning modeling. 展开更多
关键词 Gesture recognition SEMG Deep learning Temporal fusion Fuzzy fusion
在线阅读 下载PDF
DCEL:classifier fusion model for Android malware detection
18
作者 XU Xiaolong JIANG Shuai +1 位作者 ZHAO Jinbo WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期163-177,共15页
The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Andr... The rapid growth of mobile applications,the popularity of the Android system and its openness have attracted many hackers and even criminals,who are creating lots of Android malware.However,the current methods of Android malware detection need a lot of time in the feature engineering phase.Furthermore,these models have the defects of low detection rate,high complexity,and poor practicability,etc.We analyze the Android malware samples,and the distribution of malware and benign software in application programming interface(API)calls,permissions,and other attributes.We classify the software’s threat levels based on the correlation of features.Then,we propose deep neural networks and convolutional neural networks with ensemble learning(DCEL),a new classifier fusion model for Android malware detection.First,DCEL preprocesses the malware data to remove redundant data,and converts the one-dimensional data into a two-dimensional gray image.Then,the ensemble learning approach is used to combine the deep neural network with the convolutional neural network,and the final classification results are obtained by voting on the prediction of each single classifier.Experiments based on the Drebin and Malgenome datasets show that compared with current state-of-art models,the proposed DCEL has a higher detection rate,higher recall rate,and lower computational cost. 展开更多
关键词 Android malware detection deep learning ensemble learning model fusion
在线阅读 下载PDF
Hot Isostatic Pressing for Enhancing Mechanical Properties of Mo Alloys Prepared by Laser Powder Bed Fusion 被引量:1
19
作者 Liang Xunwen Fu Zhongxue +3 位作者 Zhang Shiming Che Yusi Cheng Pengming Wang Pei 《稀有金属材料与工程》 北大核心 2025年第3期587-592,共6页
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.... To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys. 展开更多
关键词 Mo alloys hot isostatic pressing laser powder bed fusion mechanical properties
原文传递
Brain Tumor Classification Using Image Fusion and EFPA-SVM Classifier
20
作者 P.P.Fathimathul Rajeena R.Sivakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2837-2855,共19页
An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha... An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison. 展开更多
关键词 Brain tumor classification improved wavelet threshold integer wavelet transform medical image fusion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部