In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to dete...In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.展开更多
Based on the definition of class shortest path in weighted rough graph, class shortest path algorithm in weighted rough graph is presented, which extends classical shortest path algorithm. The application in relations...Based on the definition of class shortest path in weighted rough graph, class shortest path algorithm in weighted rough graph is presented, which extends classical shortest path algorithm. The application in relationship mining shows effectiveness of it.展开更多
A fragment spanning over exon 2 and intron 2 of major histocompatibility complex B-LB Ⅱ genes was amplified using PCR, cloned and sequenced in 13 individuals from eight Chinese indigenous chicken breeds and one intro...A fragment spanning over exon 2 and intron 2 of major histocompatibility complex B-LB Ⅱ genes was amplified using PCR, cloned and sequenced in 13 individuals from eight Chinese indigenous chicken breeds and one introduced breed. Another 41 sequences of MHC class Ⅱ β from ten vertebrate species were cited from the NCBI GenBank. Thirteen new B-LB Ⅱ alleles were found in the chicken breeds sampled. Alignment of the exon 2 sequences revealed 91.1-97.8% similarity to each other within the chickens sampled, and the chickens shared 84.1-87.0% homology to Phasianus colchicus, 78.5-81.5% similarity to Coturnix japonica. The sequences in poultry showed 62.6-68.1% identity to HLA-DRB1, 50-61.5% similarity to DQB (HLA-, SLA- and H2-BB), 53.7-60% to HLA-DPB and 53.3-57.8% similarity to HLA-DOB. The frequency of nonsynonymous substitutions of nucleotide was higher than that of synonymous substitutions, and the frequencies of nonsynonymous and synonymous substitutions in poultry B-LB Ⅱ genes were lower than those observed in mammalian DRB1 and DQB1 genes. The deduced amino acid sequences of MHC class Ⅱ β1 domain exhibited extreme difference in conversed region and variable region patterns among the various species, but the two conserved cysteines forming disulfide-bond were shown consistent in poultry with that in mammalian species; and the carbohydrate attachment site was found more conserved in chicken, Homo sapiens, Bos taurus, Ovis aries and Capra hircus than in Sus scrofa and rodent animals. Compared with exon 2 of DQB1 genes of Homo sapiens, ruminant species and Sus scrofa, the differentia that the deletion of six nucleotides at position195 to 200 of exon 2 of DQB1 genes, and insertion of three nucleotides at position 247 to 249 of the exon 2 existed in rodent species were found, which led to the absence of three AA residues at position 65, 66, and 67 within β1 domain of DQB1 chain, and the insertion of one AA residue at position 85. The difference of the deletion of six nucleotides at position 72 to 77 of exon 2 of DPB1 genes was observed with Homo sapiens DQB1, which caused absence of three AA residues at position 24, 25, and 26 of β1 domain of DPB1 chain. The phylogenetic tree revealed that the B-LB Ⅱ sequences from poultry are not orthologous to the class Ⅱ MHC β-chain genes of mammalian species. The tree indicated that genetic evolutionary relationship of chickens with Phasianus colchicus was much closer than with Coturnix japonica, and the DQB and DPB clusters are more tightly related to each other than to the remaining clusters.展开更多
The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class cla...The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset.展开更多
文摘In order to deal with the complex association relationships between classes in an object-oriented software system,a novel approach for identifying refactoring opportunities is proposed.The approach can be used to detect complex and duplicated many-to-many association relationships in source code,and to provide guidance for further refactoring.In the approach,source code is first transformed to an abstract syntax tree from which all data members of each class are extracted,then each class is characterized in connection with a set of association classes saving its data members.Next,classes in common associations are obtained by comparing different association classes sets in integrated analysis.Finally,on condition of pre-defined thresholds,all class sets in candidate for refactoring and their common association classes are saved and exported.This approach is tested on 4 projects.The results show that the precision is over 96%when the threshold is 3,and 100%when the threshold is 4.Meanwhile,this approach has good execution efficiency as the execution time taken for a project with more than 500 classes is less than 4 s,which also indicates that it can be applied to projects of different scales to identify their refactoring opportunities effectively.
基金Natural Science Foundation of Shandong Province of China (Y2004A04)Natural Science Foundation of Shandong Province of China (Y2006A12)Foundation of Ministry of Fujian Province Education of China (JA04268).
文摘Based on the definition of class shortest path in weighted rough graph, class shortest path algorithm in weighted rough graph is presented, which extends classical shortest path algorithm. The application in relationship mining shows effectiveness of it.
基金This study was supported by"948"Project of China(2001-361)Key Project of National Basic Research and De-velopmental Plan(G2000016103)of China.
文摘A fragment spanning over exon 2 and intron 2 of major histocompatibility complex B-LB Ⅱ genes was amplified using PCR, cloned and sequenced in 13 individuals from eight Chinese indigenous chicken breeds and one introduced breed. Another 41 sequences of MHC class Ⅱ β from ten vertebrate species were cited from the NCBI GenBank. Thirteen new B-LB Ⅱ alleles were found in the chicken breeds sampled. Alignment of the exon 2 sequences revealed 91.1-97.8% similarity to each other within the chickens sampled, and the chickens shared 84.1-87.0% homology to Phasianus colchicus, 78.5-81.5% similarity to Coturnix japonica. The sequences in poultry showed 62.6-68.1% identity to HLA-DRB1, 50-61.5% similarity to DQB (HLA-, SLA- and H2-BB), 53.7-60% to HLA-DPB and 53.3-57.8% similarity to HLA-DOB. The frequency of nonsynonymous substitutions of nucleotide was higher than that of synonymous substitutions, and the frequencies of nonsynonymous and synonymous substitutions in poultry B-LB Ⅱ genes were lower than those observed in mammalian DRB1 and DQB1 genes. The deduced amino acid sequences of MHC class Ⅱ β1 domain exhibited extreme difference in conversed region and variable region patterns among the various species, but the two conserved cysteines forming disulfide-bond were shown consistent in poultry with that in mammalian species; and the carbohydrate attachment site was found more conserved in chicken, Homo sapiens, Bos taurus, Ovis aries and Capra hircus than in Sus scrofa and rodent animals. Compared with exon 2 of DQB1 genes of Homo sapiens, ruminant species and Sus scrofa, the differentia that the deletion of six nucleotides at position195 to 200 of exon 2 of DQB1 genes, and insertion of three nucleotides at position 247 to 249 of the exon 2 existed in rodent species were found, which led to the absence of three AA residues at position 65, 66, and 67 within β1 domain of DQB1 chain, and the insertion of one AA residue at position 85. The difference of the deletion of six nucleotides at position 72 to 77 of exon 2 of DPB1 genes was observed with Homo sapiens DQB1, which caused absence of three AA residues at position 24, 25, and 26 of β1 domain of DPB1 chain. The phylogenetic tree revealed that the B-LB Ⅱ sequences from poultry are not orthologous to the class Ⅱ MHC β-chain genes of mammalian species. The tree indicated that genetic evolutionary relationship of chickens with Phasianus colchicus was much closer than with Coturnix japonica, and the DQB and DPB clusters are more tightly related to each other than to the remaining clusters.
基金supported by the National Natural Science Foundation of China(61703131 61703129+1 种基金 61701148 61703128)
文摘The basic idea of multi-class classification is a disassembly method,which is to decompose a multi-class classification task into several binary classification tasks.In order to improve the accuracy of multi-class classification in the case of insufficient samples,this paper proposes a multi-class classification method combining K-means and multi-task relationship learning(MTRL).The method first uses the split method of One vs.Rest to disassemble the multi-class classification task into binary classification tasks.K-means is used to down sample the dataset of each task,which can prevent over-fitting of the model while reducing training costs.Finally,the sampled dataset is applied to the MTRL,and multiple binary classifiers are trained together.With the help of MTRL,this method can utilize the inter-task association to train the model,and achieve the purpose of improving the classification accuracy of each binary classifier.The effectiveness of the proposed approach is demonstrated by experimental results on the Iris dataset,Wine dataset,Multiple Features dataset,Wireless Indoor Localization dataset and Avila dataset.