With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical pro...With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical properties. In this paper, to obtain the accurate material properties of the circular hollow section (CHS) under pure compression, a series of concentric compression tests are conducted on the millimeter-scale cold-formed 304 stainless steel circu- lar tubular stub columns after exposure to a vacuum brazing process. The tests cover a total of 18 small-diameter stub tubes with measured thickness-to-diameter ratios (t/D) from 0.023 to 0.201. A generalized three-stage nominal stress-strain model is developed for describing the compressive behavior of the post-brazing CHSs over the full strain range. This mechanical model is especially applicable to computer code implementation. Hence, an interactive computer pro- gram is developed to simultaneously optimize three strain hardening exponents (n1, n2, n3) in the expression of the model to produce the stress-strain curve capable of accurately replicating the test data. To further reduce the number of the model and material parameters on which this model depends, this paper also develops five expressions for determining the 2.5% proof stress (ap2), n2, the ultimate compressive strength (σp3), n3, and the ultimate plastic strain (p3%) for given experimental values of three basic material parameters (E0, σ0.01, σ0.2). These expressions are validated to he effective for the CHSs with t/D 〉_ 0.027. The analytically predicted full-range stress-strain curves have generally shown close agreement with the ones obtained experimentally.展开更多
Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each spec...Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...展开更多
In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up ...In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up to failure, the shear capacity and mechanical properties of deformation were analyzed comparatively between GFRP reinforced concrete (GFRP-RC) beams and steel reinforced concrete (steel-RC) beams. Furthermore, influencing factors of shear capacity of GFRP-RC beam with circular cross section were also investigated. The test results indicate that the failure modes of GFRP-RC and steel-RC beams are the same, but the crack patterns are slightly different. And, the shear capacity of GFRP-RC beam firstly increases with the reduction of shear span ratio, and then decreases. In addition, it was found that the influencing coefficient of GFRP on concrete increases with shear span ratio reducing.展开更多
In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion ...In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.展开更多
Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of select...Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of selecting good coordinate functions about Galerkin technique.The effects caused by the boundary conditions and the Reynolds number on the flow were discussed.The position of the separate and reattachment points was obtained.The tendency of the variation about the shear stress on the wall and friction factor along the axis direction were also analyzed.The results at a small parameter have good agreements with the perturbation ones.展开更多
基金The work was supported by the National Natural Science Foundation of China under Grant Nos. 11432004 and 11421091.
文摘With the rapid development of microscale cellular structures, the small-diameter cold-formed welded stainless steel tubes have recently been used for creating the metallic lat- tice topologies with high mechanical properties. In this paper, to obtain the accurate material properties of the circular hollow section (CHS) under pure compression, a series of concentric compression tests are conducted on the millimeter-scale cold-formed 304 stainless steel circu- lar tubular stub columns after exposure to a vacuum brazing process. The tests cover a total of 18 small-diameter stub tubes with measured thickness-to-diameter ratios (t/D) from 0.023 to 0.201. A generalized three-stage nominal stress-strain model is developed for describing the compressive behavior of the post-brazing CHSs over the full strain range. This mechanical model is especially applicable to computer code implementation. Hence, an interactive computer pro- gram is developed to simultaneously optimize three strain hardening exponents (n1, n2, n3) in the expression of the model to produce the stress-strain curve capable of accurately replicating the test data. To further reduce the number of the model and material parameters on which this model depends, this paper also develops five expressions for determining the 2.5% proof stress (ap2), n2, the ultimate compressive strength (σp3), n3, and the ultimate plastic strain (p3%) for given experimental values of three basic material parameters (E0, σ0.01, σ0.2). These expressions are validated to he effective for the CHSs with t/D 〉_ 0.027. The analytically predicted full-range stress-strain curves have generally shown close agreement with the ones obtained experimentally.
基金Supported by National Natural Science Foundation of China (No.50608054)
文摘Experimental research and numerical analysis were applied to study the ultimate load capacity(ULC) and reinforcement of circular-hollow-section N-joint.Four specimens were tested under static load.The ULC of each specimen was obtained and the detailed failure conditions were discussed.Based on the results, both welding a plate on the chord member and filling concrete in the chord member are effective to reinforce the N-joint, but it is suggested that these two methods should not be applied simultaneously.Mo...
基金the National Natural Science Foundation of China (No.51078318)the Program for New Century Excellent Talents in University (No.10-0667)the Fundamental Research Funds for the Central Universities (No.SWJTU09CX006)
文摘In order to research the shear behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam with circular cross section, based on the test results of 36 concrete beams subjected to four-point loading up to failure, the shear capacity and mechanical properties of deformation were analyzed comparatively between GFRP reinforced concrete (GFRP-RC) beams and steel reinforced concrete (steel-RC) beams. Furthermore, influencing factors of shear capacity of GFRP-RC beam with circular cross section were also investigated. The test results indicate that the failure modes of GFRP-RC and steel-RC beams are the same, but the crack patterns are slightly different. And, the shear capacity of GFRP-RC beam firstly increases with the reduction of shear span ratio, and then decreases. In addition, it was found that the influencing coefficient of GFRP on concrete increases with shear span ratio reducing.
文摘In this paper we use the Green function method to solve the problem of steady one dimensional flow of an incompressible viscous, electrically conducting fluid through a pipe with partial circular ring cross sec- tion and one with annular cross section, in the presence of an applied transverse uniform magnetic field, We ob- tain analytic solutions and carry out some numerical calculations of the velocity distribution and induced magnet- ic field.
文摘Using hybrid perturbatin_Galerkin technique,a crcular cross_section tube model with sinusoidal wall is studied.This technique can remove the limitation of small parameters for perturbation and the difficulty of selecting good coordinate functions about Galerkin technique.The effects caused by the boundary conditions and the Reynolds number on the flow were discussed.The position of the separate and reattachment points was obtained.The tendency of the variation about the shear stress on the wall and friction factor along the axis direction were also analyzed.The results at a small parameter have good agreements with the perturbation ones.