Camera calibration is critical in computer vision measurement system, affecting the accuracy of the whole system. Many camera calibration methods have been proposed, but they cannot consider precision and operation co...Camera calibration is critical in computer vision measurement system, affecting the accuracy of the whole system. Many camera calibration methods have been proposed, but they cannot consider precision and operation complexity at the same time. In this paper, a new technique is proposed to calibrate camera. Firstly, the global calibration method is described in de-tail. It requires the camera to observe a checkerboard pattern shown at a few different orientations. The checkerboard corners are obtained by Harris algorithm. With direct linear transformation and non-linear optimal algorithm, the global calibration pa-rameters are obtained. Then, a sub-regional method is proposed. Those corners are divided into two groups, middle corners and edge corners, which are used to calibrate the corresponding area to get two sets of calibration parameters. Finally, some experimental images are used to test the proposed method. Experimental results demonstrate that the average projection error of sub-region method is decreased at least 16% compared with the global calibration method. The proposed technique is simple and accurate. It is suitable for the industrial computer vision measurement.展开更多
ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the materi...This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.展开更多
Numerical instabilities are often encountered in FE solution of continuumtopology optimization. The essence of the numerical instabilities is given from the inverse partialdifferential equation (PDE) point of view. On...Numerical instabilities are often encountered in FE solution of continuumtopology optimization. The essence of the numerical instabilities is given from the inverse partialdifferential equation (PDE) point of view. On the basis of the strict mathematical theory, a novelmethod, named as window filter and multi-grid method, which solves the numerical instabilities, isproposed. Convergent analyses and a numerical example are presented.展开更多
Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ...Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ) frame is split into two parts based on checkerboard pattern, and the two parts are encoded independently but decoded sequentially. In the decoding process, the part 1 is first decoded with the initial SI and partially decoded part (PDP) 1 is used to improve the motion vectors (MVs) and SI of both parts. At the next stage, the part 2 is decoded with the improved SI and PDP 2 is used to further refine MVs of the part 2. Then, SI of both parts are further refined. Simulation results show that the proposed algorithm can improve the peak signal to noise ratio (PSNR) by up to 1.43 dB when compared with traditional DVC codec.展开更多
基金Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCYBJC18600,No.14JCZDJC39700)the National Key Scientific Instrument and Equipment Development Project(No.2013YQ17053903)
文摘Camera calibration is critical in computer vision measurement system, affecting the accuracy of the whole system. Many camera calibration methods have been proposed, but they cannot consider precision and operation complexity at the same time. In this paper, a new technique is proposed to calibrate camera. Firstly, the global calibration method is described in de-tail. It requires the camera to observe a checkerboard pattern shown at a few different orientations. The checkerboard corners are obtained by Harris algorithm. With direct linear transformation and non-linear optimal algorithm, the global calibration pa-rameters are obtained. Then, a sub-regional method is proposed. Those corners are divided into two groups, middle corners and edge corners, which are used to calibrate the corresponding area to get two sets of calibration parameters. Finally, some experimental images are used to test the proposed method. Experimental results demonstrate that the average projection error of sub-region method is decreased at least 16% compared with the global calibration method. The proposed technique is simple and accurate. It is suitable for the industrial computer vision measurement.
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
文摘This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.
基金National Natural Science Foundation of China (No.59975015) and Doctoral Foundation of Ministry of state Education of China (No.1
文摘Numerical instabilities are often encountered in FE solution of continuumtopology optimization. The essence of the numerical instabilities is given from the inverse partialdifferential equation (PDE) point of view. On the basis of the strict mathematical theory, a novelmethod, named as window filter and multi-grid method, which solves the numerical instabilities, isproposed. Convergent analyses and a numerical example are presented.
基金Supported by the National Natural Science Foundation of China ( No. 60736043, 60672088) and the National Basic Research Program of China (No. 2009CB32005).
文摘Side information (SI) is one of the key issues in distributed video coding (DVC) and affects the compression performance of DVC largely. This paper proposes an SI refinement algorithm, in which the Wyner-Ziv (WZ) frame is split into two parts based on checkerboard pattern, and the two parts are encoded independently but decoded sequentially. In the decoding process, the part 1 is first decoded with the initial SI and partially decoded part (PDP) 1 is used to improve the motion vectors (MVs) and SI of both parts. At the next stage, the part 2 is decoded with the improved SI and PDP 2 is used to further refine MVs of the part 2. Then, SI of both parts are further refined. Simulation results show that the proposed algorithm can improve the peak signal to noise ratio (PSNR) by up to 1.43 dB when compared with traditional DVC codec.