BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and...BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.展开更多
Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character...To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.展开更多
Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to t...Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.展开更多
This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state ...This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state under throttled conditions.A typical over-under TBCC inlet,designed for a working Mach number range of 0–6 with a transition Mach number of 3.5,is examined through experimental studies in a supersonic wind tunnel with a freestream Mach number of2.9.The investigation focuses on the complex oscillatory flow and unique hysteresis observed in the mode transition process of the high-speed duct under the mildly throttled condition,utilizing highspeed schlieren and dynamic pressure acquisition system.The findings reveal that the high-speed duct undergoes four distinct oscillation stages akin to those in a higher throttled state during the mode transition,albeit with smaller dominant frequency and energy.Moreover,an irregular alternating“big/little buzz”mode is observed in the early stage of the large oscillation stage.Notably,the mildly throttled state exhibits three intriguing hysteresis properties compared to the unthrottled and higher throttled states.Firstly,hysteresis is observed in the shock train motion stage in the duct before unstart,along with the corresponding inverse process.Subsequently,hysteresis is noted in the unstart and restart of the high-speed duct,with a smaller hysteresis interval than in the unthrottled state.Finally,the hysteresis characteristics of oscillation mode switching and the corresponding inverse process are explored.Based on the analysis,the first two hysteresis phenomena are associated with the formation and dissipation of the separation bubble.The significant adverse pressure gradient constrains the cross-sectional capacity of the channel,rendering the disappearance of the separation bubble more challenging.The hysteresis in oscillation mode switching is linked to not only the channel cross-sectional capacity but also the state of the incoming boundary layer.展开更多
Xiyu conglomerate is a significant and extensively distributed geological formation in western China.A clear understanding of its properties and the establishment of a classification system are essential for selecting...Xiyu conglomerate is a significant and extensively distributed geological formation in western China.A clear understanding of its properties and the establishment of a classification system are essential for selecting appropriate research methods to investigate its engineering mechanical behavior.Based on geological data from eight typical Xiyu conglomerate geological belts and seven hydropower projects,this study summarizes the main engineering geological characteristics,and analyzes the fabric characteristics of various components of the conglomerate through laboratory tests and statistical analysis.A comprehensive classification system is proposed for Xiyu conglomerate based on two key criteria:(1)grain size distribution,quantified by the d_(50)(median grain diameter),and(2)cementation type,identified via mineralogical and geochemical analysis.This system divides Xiyu conglomerate into nine distinct categories,each defined by specific engineering geological and petrofabric properties.The results reveal that,even within the same region,the grain size composition and distribution of Xiyu conglomerate are highly heterogeneous.While the chemical composition of the cementing materials is generally consistent,notable differences in cement properties arise primarily from variations in mineral content,particularly the proportion of calcareous material(dolomite,calcite,and quartz).Conglomerates with gray or grayish-blue matrices typically exhibit higher calcareous content,whereas those with earth-yellow or khaki matrices contain less calcareous material and are predominantly argillaceous-cemented.Additionally,Xiyu conglomerate shows higher porosity compared to conventional rocks.The proposed classification method based on engineering geological and fabric characteristics offers a geological basis for further determining the engineering mechanical properties of various Xiyu conglomerate types.This approach holds potential for addressing the challenges related to unclear classification and difficulty in accurately defining mechanical parameters for Xiyu conglomerate across different regions.展开更多
The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and signi...The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.展开更多
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin...The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.展开更多
Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments...Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.展开更多
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i...Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.展开更多
0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,...0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.展开更多
Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship b...Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.展开更多
VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effe...VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.展开更多
To enhance the operational capacity and space utilization of baffle-drop shafts,this study improved the traditional baffle-drop shaft by expanding the wet-side space,incorporating large rotation-angle baffles,and inst...To enhance the operational capacity and space utilization of baffle-drop shafts,this study improved the traditional baffle-drop shaft by expanding the wet-side space,incorporating large rotation-angle baffles,and installing overflow holes in the dividing wall.A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates.The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides,significantly improving operational capacity,with the dry side capable of handling 40%of the inlet flow.Compared to the traditional shaft,the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21%and 63%,respectively,therefore enhancing structural safety.Additionally,the new shaft achieved a 2%-12%higher energy dissipation rate than the traditional shaft across different flow rates.This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract...Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.展开更多
Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distri...Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.展开更多
A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion...A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.展开更多
文摘BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
基金Funded by the National Natural Science Foundation of Hunan Province,Chinal(No.2021JJ60012)。
文摘To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.
基金supported by the National Nature Science Foundation of China (Grant No.42072303)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2021Z004).
文摘Seepage in coarse-grained soil exhibits distinct non-Darcy characteristics,and the transition from linear to nonlinear seepage significantly affects the hydraulic characteristics and geotechnical applications.Due to the complexity of pore structure in heterogeneous coarse-grained soil,identifying the critical threshold for the transition from Darcy to non-Darcy seepage is challenging.This paper introduces equivalent particle size(dep)and relative roughness(λt)as indirect indicators reflecting the pore characteristics,quantifying the complex pore structure of heterogeneous coarse-grained soil.The formulae for the derivation of Reynolds number and resistance coefficient for heterogeneous coarse-grained soil are presented.By conducting permeability tests on coarse-grained soils with different pore structures,the effect of particle composition heterogeneity on seepage characteristics was analyzed.The flow regime of heterogeneous coarse-grained soil is divided into laminar,transitional,and turbulent stages based on the relationship between Reynolds number and resistance coefficient.The energy loss patterns in each stage are closely related to pore structure.By setting the permeability ratio k∗=0.95 as the critical threshold for the transition from Darcy to non-Darcy seepage,a method for calculating the critical Reynolds number(Recr)for heterogeneous coarse-grained soil is proposed.Furthermore,we applied this method to other published laboratory data,analyzing the differences in the critical threshold for seepage transition between homogeneous and heterogeneous coarse-grained soil.This study aims to propose a more accurate and general criterion for the transition from Darcy to non-Darcy seepage in heterogeneous coarse-grained soil.
基金funded by the National Natural Science Foundation of China(Nos.12025202,U20A2070,12172175)the National Science and Technology Major Project,China(No.J2019-Ⅱ-0014-0035)+2 种基金the Postdoctoral Fellowship Program of CPSF,China(No.GZB20230970)the Science Center for Gas Turbine Project,China(Nos.P2022-C-II-002-001,P2022-A-II-002-001)the Young Scientific and Technological Talents Project of Jiangsu Association for Science and Technology,China(No.TJ-2021-052)。
文摘This study aims to investigate the intricate dynamic characteristics of the high-speed duct during the over-under Turbine-Based Combined Cycle(TBCC)inlet mode transition process while operating in an off-design state under throttled conditions.A typical over-under TBCC inlet,designed for a working Mach number range of 0–6 with a transition Mach number of 3.5,is examined through experimental studies in a supersonic wind tunnel with a freestream Mach number of2.9.The investigation focuses on the complex oscillatory flow and unique hysteresis observed in the mode transition process of the high-speed duct under the mildly throttled condition,utilizing highspeed schlieren and dynamic pressure acquisition system.The findings reveal that the high-speed duct undergoes four distinct oscillation stages akin to those in a higher throttled state during the mode transition,albeit with smaller dominant frequency and energy.Moreover,an irregular alternating“big/little buzz”mode is observed in the early stage of the large oscillation stage.Notably,the mildly throttled state exhibits three intriguing hysteresis properties compared to the unthrottled and higher throttled states.Firstly,hysteresis is observed in the shock train motion stage in the duct before unstart,along with the corresponding inverse process.Subsequently,hysteresis is noted in the unstart and restart of the high-speed duct,with a smaller hysteresis interval than in the unthrottled state.Finally,the hysteresis characteristics of oscillation mode switching and the corresponding inverse process are explored.Based on the analysis,the first two hysteresis phenomena are associated with the formation and dissipation of the separation bubble.The significant adverse pressure gradient constrains the cross-sectional capacity of the channel,rendering the disappearance of the separation bubble more challenging.The hysteresis in oscillation mode switching is linked to not only the channel cross-sectional capacity but also the state of the incoming boundary layer.
基金Xinjiang Water Science and Technology Special Project,Grant/Award Numbers:XSKJ-2022-05,XSKJ-2023-30State Grid Co.,LTD.Technology Project,Grant/Award Number:5108-202218280A-2-301-XG。
文摘Xiyu conglomerate is a significant and extensively distributed geological formation in western China.A clear understanding of its properties and the establishment of a classification system are essential for selecting appropriate research methods to investigate its engineering mechanical behavior.Based on geological data from eight typical Xiyu conglomerate geological belts and seven hydropower projects,this study summarizes the main engineering geological characteristics,and analyzes the fabric characteristics of various components of the conglomerate through laboratory tests and statistical analysis.A comprehensive classification system is proposed for Xiyu conglomerate based on two key criteria:(1)grain size distribution,quantified by the d_(50)(median grain diameter),and(2)cementation type,identified via mineralogical and geochemical analysis.This system divides Xiyu conglomerate into nine distinct categories,each defined by specific engineering geological and petrofabric properties.The results reveal that,even within the same region,the grain size composition and distribution of Xiyu conglomerate are highly heterogeneous.While the chemical composition of the cementing materials is generally consistent,notable differences in cement properties arise primarily from variations in mineral content,particularly the proportion of calcareous material(dolomite,calcite,and quartz).Conglomerates with gray or grayish-blue matrices typically exhibit higher calcareous content,whereas those with earth-yellow or khaki matrices contain less calcareous material and are predominantly argillaceous-cemented.Additionally,Xiyu conglomerate shows higher porosity compared to conventional rocks.The proposed classification method based on engineering geological and fabric characteristics offers a geological basis for further determining the engineering mechanical properties of various Xiyu conglomerate types.This approach holds potential for addressing the challenges related to unclear classification and difficulty in accurately defining mechanical parameters for Xiyu conglomerate across different regions.
基金supported by the National Natural Science Foundation of China(41925014).
文摘The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.
基金supported by the Postgraduate Education Reform and Quality Improvement Project of Henan Province,China(Grant No.YJS2023AL004)the Graduate Innovation Project of North China University of Water Resources and Electric Power(Grant No.NCWUYC-202315069)the China National Scholarship Fund organized by the China Scholarship Council(Grant No.202208410337).
文摘The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.
基金Supported by the National Natural Science Foundation of China(52274053)Natural Science Foundation of Beijing(3232028).
文摘Using the ultra-low permeability reservoirs in the L block of the Jiangsu oilfield as an example,a series of experiments,including slim tube displacement experiments of CO_(2)-oil system,injection capacity experiments,and high-temperature,high-pressure online nuclear magnetic resonance(NMR)displacement experiments,are conducted to reveal the oil/gas mass transfer pattern and oil production mechanisms during CO_(2) flooding in ultra-low permeability reservoirs.The impacts of CO_(2) storage pore range and miscibility on oil production and CO_(2) storage characteristics during CO_(2) flooding are clarified.The CO_(2) flooding process is divided into three stages:oil displacement stage by CO_(2),CO_(2) breakthrough stage,CO_(2) extraction stage.Crude oil expansion and viscosity reduction are the main mechanisms for improving recovery in the CO_(2) displacement stage.After CO_(2) breakthrough,the extraction of light components from the crude oil further enhances oil recovery.During CO_(2) flooding,the contribution of crude oil in large pores to the enhanced recovery exceeds 46%,while crude oil in medium pores serves as a reserve for incremental recovery.After CO_(2) breakthrough,a small portion of the crude oil is extracted and carried into nano-scale pores by CO_(2),becoming residual oil that is hard to recover.As the miscibility increases,the CO_(2) front moves more stably and sweeps a larger area,leading to increased CO_(2) storage range and volume.The CO_(2) full-storage stage contributes the most to the overall CO_(2) storage volume.In the CO_(2) escape stage,the storage mechanism involves partial in-situ storage of crude oil within the initial pore range and the CO_(2) carrying crude oil into smaller pores to increase the volume of stored CO_(2).In the CO_(2) leakage stage,as crude oil is produced,a significant amount of CO_(2) leaks out,causing a sharp decline in the storage efficiency.
基金Project(52409132) supported by the National Natural Science Foundation of ChinaProject(ZR2024QE018) supported by the Natural Science Foundation of Shandong Province,China+2 种基金Project(BK20240431) supported by Basic Research Program of Jiangsu,ChinaProject(SNKJ2023A07-R14) supported by the Major Key Technical Research Projects of Shandong Energy Group,ChinaProject(2024M751813) supported by China Postdoctoral Science Foundation。
文摘Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process.
基金funded by the National Key R&D Program of China(No.2020YFC150071)partly supported by the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)and the Research Funds for the Interdisciplinary Projects,CHU(No.300104240914)。
文摘0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.
基金supported by the National Key Research and Development Program(No.2021YFD1300201)Jilin Provincial Department of Science and Technology Innovation Platform and Talent Special Project(No.20230508090RC).
文摘Background There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming,but these feedstuffs are fibrous in nature.This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization,energy metabolism,and gut microbiota in growing pigs.Methods Thirty-six growing barrows(47.2±1.5 kg)were randomly allotted to 6 dietary treatments with 2 apparent viscosity levels and 3β-glucan-to-arabinoxylan ratios.In the experiment,nutrient utilization,energy metabolism,fecal microbial community,and production and absorption of short-chain fatty acid(SCFA)of pigs were investigated.In vitro digestion and fermentation models were used to compare the fermentation characteristics of feedstuffs and ileal digesta in the pig’s hindgut.Results The production dynamics of SCFA and dry matter corrected gas production of different feedstuffs during in vitro fermentation were different and closely related to the physical properties and chemical structure of the fiber.In animal experiments,increasing the dietary apparent viscosity and theβ-glucan-to-arabinoxylan ratios both increased the apparent ileal digestibility(AID),apparent total tract digestibility(ATTD),and hindgut digestibility of fiber components while decreasing the AID and ATTD of dry matter and organic matter(P<0.05).In addition,increasing dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased gas exchange,heat production,and protein oxidation,and decreased energy deposition(P<0.05).The dietary apparent viscosity andβ-glucanto-arabinoxylan ratios had linear interaction effects on the digestible energy,metabolizable energy,retained energy(RE),and net energy(NE)of the diets(P<0.05).At the same time,the increase of dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios both increased SCFA production and absorption(P<0.05).Increasing the dietary apparent viscosity andβ-glucan-to-arabinoxylan ratios increased the diversity and abundance of bacteria(P<0.05)and the relative abundance of beneficial bacteria.Furthermore,increasing the dietaryβ-glucan-to-arabinoxylan ratios led to a linear increase in SCFA production during the in vitro fermentation of ileal digesta(P<0.001).Finally,the prediction equations for RE and NE were established.Conclusion Dietary fiber physicochemical properties alter dietary fermentation patterns and regulate nutrient utilization,energy metabolism,and pig gut microbiota composition and metabolites.
基金supported by the Natural Science Foundation of Hebei Province(Nos.D2019106042,D2020304038,and D2021106002)the National Natural Science Foundation of China(No.22276099)+1 种基金the State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex(No.2021080544)the Environmental Monitoring Research Foundation of Jiangsu Province(No.2211).
文摘VOCs(Volatile organic compounds)exert a vital role in ozone and secondary organic aerosol production,necessitating investigations into their concentration,chemical characteristics,and source apportionment for the effective implementation of measures aimed at preventing and controlling atmospheric pollution.FromJuly to October 2020,onlinemonitoringwas conducted in the main urban area of Shijiazhuang to collect data on VOCs and analyze their concentrations and reactivity.Additionally,the PMF(positive matrix factorization)method was utilized to identify the VOCs sources.Results indicated that the TVOCs(total VOCs)concentration was(96.7±63.4μg/m^3),with alkanes exhibiting the highest concentration of(36.1±26.4μg/m^3),followed by OVOCs(16.4±14.4μg/m^3).The key active components were alkenes and aromatics,among which xylene,propylene,toluene,propionaldehyde,acetaldehyde,ethylene,and styrene played crucial roles as reactive species.The sources derived from PMF analysis encompassed vehicle emissions,solvent and coating sources,combustion sources,industrial emissions sources,as well as plant sources,the contribution of which were 37.80%,27.93%,16.57%,15.24%,and 2.46%,respectively.Hence,reducing vehicular exhaust emissions and encouraging neighboring industries to adopt low-volatile organic solvents and coatings should be prioritized to mitigate VOCs levels.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFD1700802).
文摘To enhance the operational capacity and space utilization of baffle-drop shafts,this study improved the traditional baffle-drop shaft by expanding the wet-side space,incorporating large rotation-angle baffles,and installing overflow holes in the dividing wall.A three-dimensional turbulent model was developed using ANSYS Fluent to simulate the hydraulic characteristics of both traditional and new baffle-drop shafts across various flow rates.The simulation results demonstrated that the new shaft design allowed for discharge from both the wet and dry sides,significantly improving operational capacity,with the dry side capable of handling 40%of the inlet flow.Compared to the traditional shaft,the new design reduced shaft wall pressures and decreased the mean and standard deviation of pressure on typical baffles by 21%and 63%,respectively,therefore enhancing structural safety.Additionally,the new shaft achieved a 2%-12%higher energy dissipation rate than the traditional shaft across different flow rates.This study offers valuable insights for the design and optimization of drop shafts in deep tunnel drainage systems.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
基金Project(52278421)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0754)supported by the Fundamental Research Funds for the Central Universities of Central South University,China+2 种基金Project(2023CXQD067)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(2022QNRC001)supported by Young Elite Scientists Sponsorship Program by CASTProject(2023TJ-N24)supported by the Youth Talent Program by China Railway Society and the Hunan Provincial Science and Technology Promotion Talent Project。
文摘Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels.
基金funded by the National Natural Science Foundation of China(Grant No.42325503)the Hubei Provincial Natural Science Foundation and the Meteorological Innovation and Development Project of China(Grant Nos.2023AFD096 and 2022CFD122)+1 种基金the Natural Science Foundation of Wuhan(Grant No.2024020901030454)the Beijige Foundation of NJIAS(Grant No.BJG202304)。
文摘Based on comprehensive observations of 20 wire icing events during winter from 2019 to 2021,we investigated the characteristics of the icing properties,the atmospheric boundary layer structure,the raindrop size distribution,and their associated effects on the ice accretion mechanism in the mountainous region of Southwest China.The maximum ice weight was positively correlated with the duration of ice accretion in the mountainous area.The duration of precipitation accounted for less than 20%of the icing period in the mountainous area,with solid-phase hydrometeors being predominant.Icing events,dominated by freezing rain(FR)and mixed rain–graupel(more than 70%),were characterized by glaze or highdensity mixed icing.The relationship between the melting energy and refreezing energy reflected the distribution characteristics of the proportion of FR under mixed-phase precipitation.The intensity of the warm layer and the dominant precipitation phase significantly affected the variations in the microphysical properties of FR.The melting of large dry snowflakes significantly contributed to FR in the mountainous areas,resulting in smaller generalized intercepts and larger mass-weighted mean diameters in the presence of a stronger warm layer.Under a weaker warm layer,the value of the massweighted mean diameter was significantly smaller because of the inability of large solid particles to melt.Finally,FR in the mountainous area dominated the ice weight during the rapid ice accumulation period.A numerical simulation of FR icing on wires effectively revealed the evolution of disaster-causing icing in mountainous areas.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC2811600)the National Natural Science Foundation of China(Grant Nos.52301349 and 52088102)+1 种基金the Qingdao Post-Doctorate Science Fund(No.QDBSH20220202070)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820).
文摘A deep-sea mining riser is a crucial component of the system used to lift seafloor mineral resources to the vessel.It is prone to damage and failure because of harsh environmental conditions and internal fluid erosion.Furthermore,damage can impact the response characteristics of the riser,but varying environmental loadings easily mask it.Thus,distin-guishing between riser damage and environmental effects poses a considerable challenge.To address this issue,a cantilevered model is created for a deep-sea mining riser via the concentrated mass method,and a time-domain analytical strategy is developed.The vortex-induced vibration(VIV)response characteristics of the riser are initially examined,considering various damage conditions and flow velocities.The study results revealed four primary observations:(a)effective tension can serve as a reliable indicator for identifying damage at lower velocities;(b)there are noticeable differences in displacement between the healthy and damaged risers in the in-line direction rather than the cross-flow direction;(c)frequency characteristics can more effectively distinguish the damage conditions at high flow velocities,with the mean square frequency and frequency variance being more effective than the centroid frequency and root variance frequency;(d)displacement differences are more sensitive to damage occurring near the top and bottom of the riser,while both velocity variations and structural damage can influence displacements,especially in regions between modal nodes.The vibrational behavior and damage indicators are clarified for structural health monitoring of deep-sea mining risers during lifting operations.