Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological s...Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.展开更多
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie...BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.展开更多
Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m...Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.展开更多
This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotr...This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
This study focuses on the three courtyards located in the eastern,central,and western sections of the Tongzhou Campus of Renmin University of China.Adopting a functional differentiation perspective,the research system...This study focuses on the three courtyards located in the eastern,central,and western sections of the Tongzhou Campus of Renmin University of China.Adopting a functional differentiation perspective,the research systematically analyzes the patterns of plant diversity within courtyards characterized by distinct functional orientations.This analysis employs various plant species diversity indices,including the Patrick richness index,Simpson dominance index,Shannon-Wiener diversity index,and Pielou evenness index,alongside a classification of functional plant types,namely ornamental,ecological regulation,spatial shaping,and recreational assistance.The results indicate that the east courtyard presents the highest Patrick species richness(S=42),predominantly comprising spatial shaping and recreational assistance plants,which are wellsuited for recreational and passage functions.Conversely,the central courtyard exhibits the lowest Patrick species richness(S=19),characterized by a balanced distribution of functional types,with an emphasis on public display and traffic guidance.The west courtyard demonstrates the greatest stability in the tree layer(D=0.87),featuring a combination of shade-tolerant and ornamental plants that fulfill the requirements for a tranquil and naturalistic environment.One-way analysis of variance reveals that only Patrick species richness differs significantly among the courtyards(P=0.007),whereas the diversity index does not show a significant difference.This finding suggests that functional requirements precisely regulate diversity through microhabitat heterogeneity and plant configuration strategies.This study offers both a theoretical foundation and practical guidance for the plant configuration and functional optimization of small-scale courtyards on campus.展开更多
The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cool...The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-ele...In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.展开更多
Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to s...Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.展开更多
BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and...BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.展开更多
BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifyi...BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifying the prevalence of these abnormalities and understanding their predictors is vital for optimizing pretransplant risk stratification and improving post-transplant outcomes.AIM To determine the prevalence of left ventricular hypertrophy(LVH),left ventricular systolic dysfunction(LVSD),diastolic dysfunction(DD),pulmonary hypertension(PH),and their predictors,and to assess their impact on graft function in pre-transplant candidates.METHODS The study included all successful transplant candidates older than 14 who had a baseline echocardiogram.Binary logistic regression models were constructed to identify factors associated with LVH,LVSD,DD,and PH.RESULTS Out of 259 patients,LVH was present in 64%(166),12%(31)had LVSD,27.5%(71)had DD,and 66(25.5%)had PH.Independent predictors of LVH included male gender[odds ratio(OR):2.51;95%CI:1.17-5.41 P=0.02],PH(OR=2.07;95%CI:1.11-3.86;P=0.02),DD(OR:2.47;95%CI:1.29-4.73;P=0.006),and dyslipidemia(OR=1.94;95%CI:1.07-3.53;P=0.03).Predictors for LVSD included patients with DD(OR=3.3,95%CI:1.41-7.81;P=0.006)and a family history of coronary artery disease(OR=4.50,95%CI:1.33-15.20;P=0.015).Peritoneal dialysis was an independent predictor for DD(OR=10.03;95%CI:1.71-58.94,P=0.011).The presence of LVH(OR=3.32,95%CI:1.05-10.55,P=0.04)and mild to moderate or moderate to severe mitral regurgitation(OR=4.63,95%CI:1.45-14.78,P=0.01)were significant factors associated with PH.These abnormalities had no significant impact on estimated glomerular filtration at discharge,6 months,1 year,or 2 years post-transplant.CONCLUSION Significant echocardiographic abnormalities persist in a potential transplant candidate despite cardiac clearance,although they don’t affect future graft function.Understanding the risk factors associated with these abnormalities may help clinicians address these factors pre-and post-transplant to achieve better outcomes.展开更多
BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major ...BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.展开更多
BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly...BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.展开更多
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:...AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.展开更多
BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neu...BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neurodynamic mobilization in facilitating knee joint functional recovery.METHODS Thirty-two patients with post-traumatic knee osteoarthritis treated at Chonghua Hospital of Traditional Chinese Medicine(Guilin)from March 2024 to August 2025 were randomly assigned to a control group(n=16)or an intervention group(n=16).Both groups received eight weeks of conventional treatment;and the intervention group additionally underwent neurodynamic mobilization.Outcomes including pain assessed by the visual analogue scale,active range of motion,Lysholm score,stork stand test,single hop test,and Y-balance test were assessed before and after the intervention.RESULTS There were no significant differences between the two groups in baseline characteristics,including gender,age,body mass index,or surgical side(P>0.05).Two-way repeated-measures analysis of variance demonstrated significant time×group interaction effects for the visual analogue scale score(F=13.364,P<0.05),Lysholm knee score(F=20.385,P<0.05),stork stand test(F=103.756,P<0.05),and Y-balance test score(F=8.089,P<0.05).CONCLUSION Neurodynamic mobilization effectively reduces pain,improves knee function,and enhances lower limb balance in patients with mild post-traumatic knee osteoarthritis.展开更多
Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ...Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.展开更多
Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instabili...Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.展开更多
Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop...Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.展开更多
基金supported by Deutsche Forschungsgemeinschaft,German Research Foundation grant GA 654/13-2 to OG.
文摘Microglia,the resident immune cells of the central nervous system,exhibit a wide array of functional states,even in their so-called“homeostatic”condition,when they are not actively responding to overt pathological stimuli.These functional states can be visualized using a combination of multi-omics techniques(e.g.,gene and protein expression,posttranslational modifications,mRNA profiling,and metabolomics),and,in the case of homeostatic microglia,are largely defined by the global(e.g.,genetic variations,organism’s age,sex,circadian rhythms,and gut microbiota)as well as local(specific area of the brain,immediate microglial surrounding,neuron-glia interactions and synaptic density/activity)signals(Paolicelli et al.,2022).While phenomics(i.e.,ultrastructural microglial morphology and motility)is also one of the key microglial state-defining parameters,it is known that cells with similar morphology can belong to different functional states.
文摘BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.
基金Supported by the National Basic Research Program of China(2012CB025904)Zhengzhou Shengda University of Economics,Business and Management(SD-YB2025085)。
文摘Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme.
文摘This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金Sponsored by 2025 Undergraduate Innovation and Entrepreneurship Training Program Project.
文摘This study focuses on the three courtyards located in the eastern,central,and western sections of the Tongzhou Campus of Renmin University of China.Adopting a functional differentiation perspective,the research systematically analyzes the patterns of plant diversity within courtyards characterized by distinct functional orientations.This analysis employs various plant species diversity indices,including the Patrick richness index,Simpson dominance index,Shannon-Wiener diversity index,and Pielou evenness index,alongside a classification of functional plant types,namely ornamental,ecological regulation,spatial shaping,and recreational assistance.The results indicate that the east courtyard presents the highest Patrick species richness(S=42),predominantly comprising spatial shaping and recreational assistance plants,which are wellsuited for recreational and passage functions.Conversely,the central courtyard exhibits the lowest Patrick species richness(S=19),characterized by a balanced distribution of functional types,with an emphasis on public display and traffic guidance.The west courtyard demonstrates the greatest stability in the tree layer(D=0.87),featuring a combination of shade-tolerant and ornamental plants that fulfill the requirements for a tranquil and naturalistic environment.One-way analysis of variance reveals that only Patrick species richness differs significantly among the courtyards(P=0.007),whereas the diversity index does not show a significant difference.This finding suggests that functional requirements precisely regulate diversity through microhabitat heterogeneity and plant configuration strategies.This study offers both a theoretical foundation and practical guidance for the plant configuration and functional optimization of small-scale courtyards on campus.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3701000)the National Natural Science Foundation of China(Nos.52471118,52101125,U2037601,and U21A2048)Young Elite Scientists Sponsorship Program by CAST,China(No.2022QNRC001)。
文摘The dependence of shrinkage porosities on microstructure characteristics of Mg−12Al alloy was investigated.The distribution,morphology,size,and number density of shrinkage porosities were analyzed under different cooling rates.The relationship between shrinkage porosities and microstructure characteristics was discussed in terms of temperature conditions,feeding channel characteristics,and feeding capacity.Further,the feeding behavior of the residual liquid phase in the solid skeleton was quantified by introducing permeability.Results show a strong correlation between the solid microstructure skeleton and shrinkage porosity characteristics.An increase in permeability corresponds to a declining number density of shrinkage porosities.This study aims to provide a more complete understanding how to reduce shrinkage porosities by controlling microstructure characteristics.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
文摘In this paper,the isogeometric analysis(IGA)method is employed to analyze the oscillation characteristics of functionally graded triply periodic minimal surface(FG-TPMS)curved-doubly shells integrated with magneto-electric surface layers(referred to as"FG-TPMS-MEE curved-doubly shells")subjected to low-velocity impact loads.This study presents low-velocity impact load model based on a single springmass(S-M)approach.The FG-TPMS-MEE curved-doubly shells are covered with two magneto-electric surface layers,while the core layer consists of three types:I-graph and Wrapped Package-graph(IWP),Gyroid(G),and Primitive(P),with various graded functions.These types are notable for their exceptional stiffness-to-weight ratios,enabling a wide range of potential applications.The Maxwell equations and electromagnetic boundary conditions are applied to compute the change in electric potentials and magnetic potentials.The equilibrium equations of the shell are derived from a refined higher-order shear deformation theory(HSDT),and the transient responses of the FG-TPMS-MEE curveddoubly shells are subsequently determined using Newmark's direct integration method.These results have applications in structural vibration control and the analysis of structures subjected to impact or explosive loads.Furthermore,this study provides a theoretical prediction of the low-velocity impact load and magneto-electric-elastic effects on the free vibration and transient response of FG-TPMS-MEE curved-doubly shells.
基金Supported by The Natural Science Foundation of China,No.82374292the Plans for Major Provincial Science and Technology Projects of Anhui Province,No.202303a07020003the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine,No.ZYYCXTD-C-202401.
文摘Functional gastrointestinal disorders(FGIDs),including irritable bowel syndrome(IBS),functional dyspepsia(FD),and gastroesophageal reflux disease(GERD),present persistent diagnostic and therapeutic challenges due to symptom heterogeneity and the absence of reliable biomarkers.Artificial intelligence(AI)enables the integration of multimodal data to enhance FGID management through precision diagnostics and preventive healthcare.This minireview summarizes recent advancements in AI applications for FGIDs,highlighting progress in diagnostic accuracy,subtype classification,personalized interventions,and preventive strategies inspired by the traditional Chinese medicine concept of“treating the undiseased”.Machine learning and deep learning algorithms have demonstrated value in improving IBS diagnosis,refining FD neuro-gastrointestinal subtyping,and screening for GERD-related complications.Moreover,AI supports dietary,psychological,and integrative medicine-based interventions to improve patient adherence and quality of life.Nonetheless,key challenges remain,including data heterogeneity,limited model interpretability,and the need for robust clinical validation.Future directions emphasize interdisciplinary collaboration,the development of multimodal and explainable AI models,and the creation of patientcentered platforms to facilitate a shift from reactive treatment to proactive prevention.This review provides a systematic framework to guide the clinical application and theoretical innovation of AI in FGIDs.
文摘BACKGROUND Appropriate care for individuals who attempt suicide and are admitted to the emergency department(ED)can prevent future suicidal behavior.It is vital to understand their sociodemographic characteristics and the effects of targeted psychological care.AIM To analyze sociodemographic characteristics of suicide attempters treated in the ED and evaluate the efficacy of psychological care.METHODS Data from 239 suicide attempters treated in the ED of the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture(Hubei Province,China)between January 2021 and February 2025 were divided into 2:Control(n=108)and psychological care(n=131).The demographic characteristics and effects of the psychological care were analyzed.RESULTS The mean(±SD)age of the 239 patients[114 male(47.7%),125 female(52.3%)]was 26.25±9.3 years,of whom 122(45.2%)were single,117(48.9%)were married,and 106(44.4%)had secondary education.Thirty-eight(15.9%)patients had suicidal intent,with a mean of 1.26±0.59 suicide attempts each.Twenty-two(9.21%)patients had a family history of suicide,while 8(3.34%)had a family history of suicide attempt(s).Before intervention,mean Suicidal Intent Scale scores in the psychological nursing and control groups were 21.57±5.28 and 19.86±5.92,respectively(P>0.05).After 1 month of nursing intervention,the respective scores were 10.09±1.11 and 16.48±0.87(P<0.001);and the re-suicide rates were 11.45%(15/131)and 24.07%(26/108)(P<0.001).CONCLUSION Psychological care significantly reduces suicide risk;EDs should provide comprehensive mental health care.
文摘BACKGROUND An echocardiogram is an essential tool in the evaluation of potential kidney transplant recipients(KTRs).Despite cardiac clearance,potential KTRs still have structural and functional abnormalities.Identifying the prevalence of these abnormalities and understanding their predictors is vital for optimizing pretransplant risk stratification and improving post-transplant outcomes.AIM To determine the prevalence of left ventricular hypertrophy(LVH),left ventricular systolic dysfunction(LVSD),diastolic dysfunction(DD),pulmonary hypertension(PH),and their predictors,and to assess their impact on graft function in pre-transplant candidates.METHODS The study included all successful transplant candidates older than 14 who had a baseline echocardiogram.Binary logistic regression models were constructed to identify factors associated with LVH,LVSD,DD,and PH.RESULTS Out of 259 patients,LVH was present in 64%(166),12%(31)had LVSD,27.5%(71)had DD,and 66(25.5%)had PH.Independent predictors of LVH included male gender[odds ratio(OR):2.51;95%CI:1.17-5.41 P=0.02],PH(OR=2.07;95%CI:1.11-3.86;P=0.02),DD(OR:2.47;95%CI:1.29-4.73;P=0.006),and dyslipidemia(OR=1.94;95%CI:1.07-3.53;P=0.03).Predictors for LVSD included patients with DD(OR=3.3,95%CI:1.41-7.81;P=0.006)and a family history of coronary artery disease(OR=4.50,95%CI:1.33-15.20;P=0.015).Peritoneal dialysis was an independent predictor for DD(OR=10.03;95%CI:1.71-58.94,P=0.011).The presence of LVH(OR=3.32,95%CI:1.05-10.55,P=0.04)and mild to moderate or moderate to severe mitral regurgitation(OR=4.63,95%CI:1.45-14.78,P=0.01)were significant factors associated with PH.These abnormalities had no significant impact on estimated glomerular filtration at discharge,6 months,1 year,or 2 years post-transplant.CONCLUSION Significant echocardiographic abnormalities persist in a potential transplant candidate despite cardiac clearance,although they don’t affect future graft function.Understanding the risk factors associated with these abnormalities may help clinicians address these factors pre-and post-transplant to achieve better outcomes.
基金Supported by Suzhou Clinical Medical Center for Mood Disorders,No.Szlcyxzx202109Suzhou Key Laboratory,No.SZS2024016Multicenter Clinical Research on Major Diseases in Suzhou,No.DZXYJ202413.
文摘BACKGROUND Suicide constitutes the second leading cause of death among adolescents globally and represents a critical public health concern.The neural mechanisms underlying suicidal behavior in adolescents with major depressive disorder(MDD)remain poorly understood.Aberrant resting-state functional connectivity(rsFC)in the amygdala,a key region implicated in emotional regulation and threat detection,is strongly implicated in depression and suicidal behavior.AIM To investigate rsFC alterations between amygdala subregions and whole-brain networks in adolescent patients with depression and suicide attempts.METHODS Resting-state functional magnetic resonance imaging data were acquired from 32 adolescents with MDD and suicide attempts(sMDD)group,33 adolescents with MDD but without suicide attempts(nsMDD)group,and 34 demographically matched healthy control(HC)group,with the lateral and medial amygdala(MeA)defined as regions of interest.The rsFC patterns of amygdala subregions were compared across the three groups,and associations between aberrant rsFC values and clinical symptom severity scores were examined.RESULTS Compared with the nsMDD group,the sMDD group exhibited reduced rsFC between the right lateral amygdala(LA)and the right inferior occipital gyrus as well as the left middle occipital gyrus.Compared with the HC group,the abnormal brain regions of rsFC in the sMDD group and nsMDD group involve the parahippocampal gyrus(PHG)and fusiform gyrus.In the sMDD group,right MeA and right temporal pole:Superior temporal gyrus rsFC value negatively correlated with the Rosenberg Self-Esteem Scale scores(r=-0.409,P=0.025),while left LA and right PHG rsFC value positively correlated with the Adolescent Self-Rating Life Events Checklist interpersonal relationship scores(r=0.372,P=0.043).CONCLUSION Aberrant rsFC changes between amygdala subregions and these brain regions provide novel insights into the underlying neural mechanisms of suicide attempts in adolescents with MDD.
文摘BACKGROUND Dry eye disease(DED)is a multifactorial ocular surface disorder with rising prevalence.It is closely related to systemic health and psychological factors,such as sleep and mood disorders,which significantly impact the quality of life of patients.AIM To explore the correlations between ocular surface function,sleep quality,and anxiety/depression in patients with DED.METHODS This was a cross-sectional investigative study that included 358 patients with DED between January 2022 and January 2025.Ocular surface was assessed using the ocular surface disease index(OSDI),tear film break-up time,fluorescein staining score,and Schirmer I test.The Pittsburgh Sleep Quality Index(PSQI),Self-Rating Anxiety Scale(SAS),and Self-Rating Depression Scale(SDS)were used to evaluate sleep quality and anxiety/depression levels.Correlation and linear regression analyses were used to explore the relationships.RESULTS The mean PSQI score of the patients was 9.94±2.18;the mean SAS score was 47.30±4.90,and the mean SDS score was 50.08±5.52.These suggested a prevalence of sleep and psychological abnormalities.There was a significant correlation between the indicators of ocular surface function(OSDI,tear film break-up time,fluorescein staining,and Schirmer I test)and PSQI,SAS,and SDS scores(P<0.05).Moreover,multiple regression revealed that age≥50 years(β=1.55,P=0.029),PSQI scores(β=0.58,P<0.001),SAS scores(β=0.17,P=0.017),and SDS scores(β=0.15,P=0.019)were independent predictors of the OSDI scores.CONCLUSION Ocular surface function in patients with DED is closely related to sleep quality and anxiety/depression,emphasizing the need for holistic clinical management.
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(No.HR20C0026)the National Research Foundation of Korea(NRF)(No.RS-2023-00247504)the Patient-Centered Clinical Research Coordinating Center,funded by the Ministry of Health&Welfare,Republic of Korea(No.HC19C0276).
文摘AIM:To build a functional generalized estimating equation(GEE)model to detect glaucomatous visual field progression and compare the performance of the proposed method with that of commonly employed algorithms.METHODS:Totally 716 eyes of 716 patients with primary open angle glaucoma(POAG)with at least 5 reliable 24-2 test results and 2y of follow-up were selected.The functional GEE model was used to detect perimetric progression in the training dataset(501 eyes).In the testing dataset(215 eyes),progression was evaluated the functional GEE model,mean deviation(MD)and visual field index(VFI)rates of change,Advanced Glaucoma Intervention Study(AGIS)and Collaborative Initial Glaucoma Treatment Study(CIGTS)scores,and pointwise linear regression(PLR).RESULTS:The proposed method showed the highest proportion of eyes detected as progression(54.4%),followed by the VFI rate(34.4%),PLR(23.3%),and MD rate(21.4%).The CIGTS and AGIS scores had a lower proportion of eyes detected as progression(7.9%and 5.1%,respectively).The time to detection of progression was significantly shorter for the proposed method than that of other algorithms(adjusted P≤0.019).The VFI rate displayed moderate pairwise agreement with the proposed method(k=0.47).CONCLUSION:The functional GEE model shows the highest proportion of eyes detected as perimetric progression and the shortest time to detect perimetric progression in patients with POAG.
基金Supported by the Central Guided Local Science and Technology Development Fund Project for Science and Technology Innovation Base Construction,No.Guike ZY24212046National Natural Science Foundation of China,No.U22A2092+3 种基金Guangxi Education Science“the 14th Five-Year Plan”2024 Special Project“Research on Steam Education Practice in Rehabilitation Engineering”,No.2024ZJY304the Research Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi,No.2025KY2255the Innovation Project of GUET Graduate Education,No.2025YCXB010Natural Science Research Project of Guilin Life and Health Career Technical College,No.2025GKKY04.
文摘BACKGROUND The therapeutic role of neurodynamic mobilization in improving lower limb function in patients with mild post-traumatic knee osteoarthritis remains poorly understood.AIM To further elucidate the role of neurodynamic mobilization in facilitating knee joint functional recovery.METHODS Thirty-two patients with post-traumatic knee osteoarthritis treated at Chonghua Hospital of Traditional Chinese Medicine(Guilin)from March 2024 to August 2025 were randomly assigned to a control group(n=16)or an intervention group(n=16).Both groups received eight weeks of conventional treatment;and the intervention group additionally underwent neurodynamic mobilization.Outcomes including pain assessed by the visual analogue scale,active range of motion,Lysholm score,stork stand test,single hop test,and Y-balance test were assessed before and after the intervention.RESULTS There were no significant differences between the two groups in baseline characteristics,including gender,age,body mass index,or surgical side(P>0.05).Two-way repeated-measures analysis of variance demonstrated significant time×group interaction effects for the visual analogue scale score(F=13.364,P<0.05),Lysholm knee score(F=20.385,P<0.05),stork stand test(F=103.756,P<0.05),and Y-balance test score(F=8.089,P<0.05).CONCLUSION Neurodynamic mobilization effectively reduces pain,improves knee function,and enhances lower limb balance in patients with mild post-traumatic knee osteoarthritis.
基金funded by the National Nature Science Foundation of China(62264006,62574102)“Thousand Talents Program”of Yunnan Province for Young Talents,Innovative Research Teams(in Science and Technology)in the University of Yunnan Province(IRTSTYN),XingDian Talent Support Program for Young Talents,and Frontier Research Team of Kunming University 2023,The Basic Research Project of Yunnan Province(Nos.202201AU070022)+2 种基金Kunming University Talent Introduction Fund(Nos.YJL20024)Yunnan Province Education Department Scientific Research Fund Project(Nos.2024Y759)Undergraduate Innovation and Entrepreneurship Training Program Project of Yunnan Provincial(202411393005)。
文摘Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.
基金Supported by the National Defense Basic Scientific Research Program of China.
文摘Amphibious vehicles are more prone to attitude instability compared to ships,making it crucial to develop effective methods for monitoring instability risks.However,large inclination events,which can lead to instability,occur frequently in both experimental and operational data.This infrequency causes events to be overlooked by existing prediction models,which lack the precision to accurately predict inclination attitudes in amphibious vehicles.To address this gap in predicting attitudes near extreme inclination points,this study introduces a novel loss function,termed generalized extreme value loss.Subsequently,a deep learning model for improved waterborne attitude prediction,termed iInformer,was developed using a Transformer-based approach.During the embedding phase,a text prototype is created based on the vehicle’s operation log data is constructed to help the model better understand the vehicle’s operating environment.Data segmentation techniques are used to highlight local data variation features.Furthermore,to mitigate issues related to poor convergence and slow training speeds caused by the extreme value loss function,a teacher forcing mechanism is integrated into the model,enhancing its convergence capabilities.Experimental results validate the effectiveness of the proposed method,demonstrating its ability to handle data imbalance challenges.Specifically,the model achieves over a 60%improvement in root mean square error under extreme value conditions,with significant improvements observed across additional metrics.
文摘Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research.