To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize...To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize data graphs,and an LSTM layer to extract the associations between word and graph vectors.A Dropout layer is applied to randomly deactivate neurons in the LSTM layer,while a Softmax layer maps the LSTM analysis results.Finally,a fully connected layer outputs the detection results with a dimension of 1.Experimental results demonstrate that the AUC of the deep graph matching vulnerability similarity detection model is 0.9721,indicating good stability.The similarity scores for vulnerabilities such as memory leaks,buffer overflows,and targeted attacks are close to 1,showing significant similarity.In contrast,the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less than 0.4,indicating good similarity detection performance.The model’s evaluation metrics are all above 97%,with high detection accuracy,which is beneficial for improving network security.展开更多
Minutiae-based fingerprint matching is the most commonly used in an automatic fingerprint identification system. In this paper, we propose a minutia matching method based on line segment vector. This method uses all t...Minutiae-based fingerprint matching is the most commonly used in an automatic fingerprint identification system. In this paper, we propose a minutia matching method based on line segment vector. This method uses all the detected minutiae (the ridge ending and the ridge bifurcation) in a fingerprint image to create a set of new vectors (line segment vector). Using these vectors, we can determine a truer reference point more efficiently. In addition, this new minutiae vector can also increase the accuracy of the minutiae matching. By experiment on the public domain collections of fingerprint images fvc2004 DID set A and DB4 set A, the result shows that our algorithm can obtain an improved verification performance.展开更多
Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accur...Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accuracy in identifying objects. In order to solve this problem effectively, a deep learning model for vector road data matching is proposed based on siamese neural network and VGG16 convolutional neural network, and matching experiments are carried out. Experimental results show that the proposed vector road data matching model can achieve an accuracy of more than 90% under certain data support and threshold conditions.展开更多
A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high co...A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.展开更多
Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial in...Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.展开更多
Template matching is a fundamental problem in pattern recognition, which has wide applications, especially in industrial inspection. In this paper, we propose a 1-D template matching algorithm which is an alternative ...Template matching is a fundamental problem in pattern recognition, which has wide applications, especially in industrial inspection. In this paper, we propose a 1-D template matching algorithm which is an alternative for 2-D full search block matching algorithms. Our approach consists of three steps. In the first step the images are converted from 2-D into 1-D by summing up the intensity values of the image in two directions horizontal and vertical. In the second step, the template matching is performed among 1-D vectors using the similarity function sum of square difference. Finally, the decision will be taken based on the value of similarity function. Transformation template image and sub-images in the source image from 2-D grey level information into 1-D information vector reduce the dimensionality of the data and accelerate the computations. Experimental results show that the computational time of the proposed approach is faster and performance is better than three basic template matching methods. Moreover, our approach is robust to detect the target object with changes of illumination in the template also when the Gaussian noise added to the source image.展开更多
Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the di...Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching,which includes a palette generation module and a clothing fabrics-palette color matching network(CF-PCN).Firstly,palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics.Secondly,CF-PCN generates color matching images containing color information of palettes.The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information.It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.展开更多
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
多模态影像匹配方法已在地球多源遥感影像中获得了广泛应用,但月球多模态影像的匹配尚缺少对比性研究。为了实现高分辨率月球光学图像与SAR图像的高精度匹配,本文选择月球中纬度、低纬度、南极、北极等多个实验区影像,使用SIFT (Scale-I...多模态影像匹配方法已在地球多源遥感影像中获得了广泛应用,但月球多模态影像的匹配尚缺少对比性研究。为了实现高分辨率月球光学图像与SAR图像的高精度匹配,本文选择月球中纬度、低纬度、南极、北极等多个实验区影像,使用SIFT (Scale-Invariant Feature Transform)、基于区域的CFOG (Channel Features of Orientated Gradients)、HOPC (Histogram of Orientated Phase Congruency)和基于结构特征的RIFT (Radiation-variation Insensitive Feature Transform)、 HAPCG (Histogram of Absolute Phase Consistency Gradients)、 HOWP(Histogram of the Orientation of the Weighted Phase descriptor)和深度学习SuperGlue、 LoFTR (Local Feature TRansformer)共8种特征匹配算法进行实验比较研究,通过正确匹配点数、均方根误差、重复率和覆盖度4种指标对匹配结果进行比较分析。结果表明,HAPCG算法使用了各向异性滤波并结合绝对相位方向梯度直方图构成特征向量,匹配效果最优。LoFTR算子使用了自注意层和互注意层机制,对纹理贫乏的月球影像效果次之。HOWP和SuperGlue匹配效果居中。CFOG、HOPC和RIFT效果最差。SIFT未能实现匹配。匹配点的分布和成像光照条件、影像重叠区域相关,中低纬度地区匹配效果优于南北极地区。对HAPCG匹配结果的Stokes第一参数进行了统计分析,雨海和高地实验区的匹配点的散射特性参数的平均值高于南极北极实验区,和地形特征相符。散点图显示出HAPCG匹配点对应的Stokes第一参数和光学影像灰度值存在相关性,证明了HAPCG对非线性辐射差异较大的月球光学影像和SAR影像匹配的稳健性。本研究为月球光学影像和SAR影像匹配方法的选择提供参考,有助于月球多源数据的应用。展开更多
In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal f...In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible.展开更多
基金Special Project Funded by Tsinghua University Press:“Engineering Drawing and CAD”Course Construction and Textbook Development。
文摘To enhance network security,this study employs a deep graph matching model for vulnerability similarity detection.The model utilizes a Word Embedding layer to vectorize data words,an Image Embedding layer to vectorize data graphs,and an LSTM layer to extract the associations between word and graph vectors.A Dropout layer is applied to randomly deactivate neurons in the LSTM layer,while a Softmax layer maps the LSTM analysis results.Finally,a fully connected layer outputs the detection results with a dimension of 1.Experimental results demonstrate that the AUC of the deep graph matching vulnerability similarity detection model is 0.9721,indicating good stability.The similarity scores for vulnerabilities such as memory leaks,buffer overflows,and targeted attacks are close to 1,showing significant similarity.In contrast,the similarity scores for vulnerabilities like out-of-bounds memory access and logical design flaws are less than 0.4,indicating good similarity detection performance.The model’s evaluation metrics are all above 97%,with high detection accuracy,which is beneficial for improving network security.
文摘Minutiae-based fingerprint matching is the most commonly used in an automatic fingerprint identification system. In this paper, we propose a minutia matching method based on line segment vector. This method uses all the detected minutiae (the ridge ending and the ridge bifurcation) in a fingerprint image to create a set of new vectors (line segment vector). Using these vectors, we can determine a truer reference point more efficiently. In addition, this new minutiae vector can also increase the accuracy of the minutiae matching. By experiment on the public domain collections of fingerprint images fvc2004 DID set A and DB4 set A, the result shows that our algorithm can obtain an improved verification performance.
文摘Most of the existing vector data matching methods use traditional feature geometry attribute features to match, however, many of the similarity indicators are not suitable for cross-scale data, resulting in less accuracy in identifying objects. In order to solve this problem effectively, a deep learning model for vector road data matching is proposed based on siamese neural network and VGG16 convolutional neural network, and matching experiments are carried out. Experimental results show that the proposed vector road data matching model can achieve an accuracy of more than 90% under certain data support and threshold conditions.
文摘A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.
文摘Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.
文摘Template matching is a fundamental problem in pattern recognition, which has wide applications, especially in industrial inspection. In this paper, we propose a 1-D template matching algorithm which is an alternative for 2-D full search block matching algorithms. Our approach consists of three steps. In the first step the images are converted from 2-D into 1-D by summing up the intensity values of the image in two directions horizontal and vertical. In the second step, the template matching is performed among 1-D vectors using the similarity function sum of square difference. Finally, the decision will be taken based on the value of similarity function. Transformation template image and sub-images in the source image from 2-D grey level information into 1-D information vector reduce the dimensionality of the data and accelerate the computations. Experimental results show that the computational time of the proposed approach is faster and performance is better than three basic template matching methods. Moreover, our approach is robust to detect the target object with changes of illumination in the template also when the Gaussian noise added to the source image.
基金National Natural Science Foundation of China(No.62001099)National Key Research&Development Program of China(No.2019YFC1521300)Fundamental Research Funds for the Central Universities,China(No.17D110408)。
文摘Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching,which includes a palette generation module and a clothing fabrics-palette color matching network(CF-PCN).Firstly,palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics.Secondly,CF-PCN generates color matching images containing color information of palettes.The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information.It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
文摘多模态影像匹配方法已在地球多源遥感影像中获得了广泛应用,但月球多模态影像的匹配尚缺少对比性研究。为了实现高分辨率月球光学图像与SAR图像的高精度匹配,本文选择月球中纬度、低纬度、南极、北极等多个实验区影像,使用SIFT (Scale-Invariant Feature Transform)、基于区域的CFOG (Channel Features of Orientated Gradients)、HOPC (Histogram of Orientated Phase Congruency)和基于结构特征的RIFT (Radiation-variation Insensitive Feature Transform)、 HAPCG (Histogram of Absolute Phase Consistency Gradients)、 HOWP(Histogram of the Orientation of the Weighted Phase descriptor)和深度学习SuperGlue、 LoFTR (Local Feature TRansformer)共8种特征匹配算法进行实验比较研究,通过正确匹配点数、均方根误差、重复率和覆盖度4种指标对匹配结果进行比较分析。结果表明,HAPCG算法使用了各向异性滤波并结合绝对相位方向梯度直方图构成特征向量,匹配效果最优。LoFTR算子使用了自注意层和互注意层机制,对纹理贫乏的月球影像效果次之。HOWP和SuperGlue匹配效果居中。CFOG、HOPC和RIFT效果最差。SIFT未能实现匹配。匹配点的分布和成像光照条件、影像重叠区域相关,中低纬度地区匹配效果优于南北极地区。对HAPCG匹配结果的Stokes第一参数进行了统计分析,雨海和高地实验区的匹配点的散射特性参数的平均值高于南极北极实验区,和地形特征相符。散点图显示出HAPCG匹配点对应的Stokes第一参数和光学影像灰度值存在相关性,证明了HAPCG对非线性辐射差异较大的月球光学影像和SAR影像匹配的稳健性。本研究为月球光学影像和SAR影像匹配方法的选择提供参考,有助于月球多源数据的应用。
基金supported by the National Natural Science Foundation of China(No.51006052)
文摘In order to improve the firing efficiency of projectiles,it is required to use the universal firing table for gun weapon system equipped with a variety of projectiles.Moreover,the foundation of sharing the universal firing table is the ballistic matching for two types of projectiles.Therefore,a method is proposed in the process of designing new type of projectile.The least squares support vector machine is utilized to build the ballistic trajectory model of the original projectile,thus it is viable to compare the two trajectories.Then the particle swarm optimization is applied to find the combination of trajectory parameters which meet the criterion of ballistic matching best.Finally,examples show the proposed method is valid and feasible.