The central trinomial coefficient T_(n)denotes the coefficient of x^(n)in the expansion of(1+x+x^(2))^(n).We prove a congruence related to the sums of the central trinomial coefficient and the central binomial coeffic...The central trinomial coefficient T_(n)denotes the coefficient of x^(n)in the expansion of(1+x+x^(2))^(n).We prove a congruence related to the sums of the central trinomial coefficient and the central binomial coefficient,which was conjectured by Z.-W.Sun.展开更多
We define a special function related to the digamma function and use it to evaluate in closed form various series involving binomial coefficients and harmonic numbers.
The analytical calculation of the area moments of inertia used for special mechanical tests in materials science and further generalizations for moments of different orders and broader symmetry properties has led to a...The analytical calculation of the area moments of inertia used for special mechanical tests in materials science and further generalizations for moments of different orders and broader symmetry properties has led to a new type of trigonometric power sums. The corresponding generalized equations are presented, proven, and their characteristics discussed. Although the power sums have a basic form, their results have quite different properties, dependent on the values of the free parameters used. From these equations, a large variety of power reduction formulas can be derived. This is shown by some examples.展开更多
Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and...Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that ∑k=0^p-1(k^2k/2k)≡(-1)^(p-1)/2-p^2Ep-3(modp^3) ∑k=1^(p-1)/2(k^2k)/k≡(-1)^(p+1)/2 8/3pEp-3(mod p^2),∑k=0^(p-1)/2(k^2k)^2/16k≡(-1)^(p-1)/2+p^2Ep-3(mod p^3),where E0, E1, E2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K := ∑k=1^∞(k/3)/k^2 (with (-) the Jacobi symbol), two of which are ∑k=1^∞(10k-3)8k/k2(k^2k)^2(k^3k)=π^2/2and ∑k=1^∞(15k-4)(-27)^k-1/k^3(k^2k)^2(k^3k)=K.展开更多
基金National Natural Science Foundation of China(11971222,12071208)Jiangsu Qinglan ProjectProject of Guangzhou Huashang College(2022HSDS27)。
文摘The central trinomial coefficient T_(n)denotes the coefficient of x^(n)in the expansion of(1+x+x^(2))^(n).We prove a congruence related to the sums of the central trinomial coefficient and the central binomial coefficient,which was conjectured by Z.-W.Sun.
文摘We define a special function related to the digamma function and use it to evaluate in closed form various series involving binomial coefficients and harmonic numbers.
文摘The analytical calculation of the area moments of inertia used for special mechanical tests in materials science and further generalizations for moments of different orders and broader symmetry properties has led to a new type of trigonometric power sums. The corresponding generalized equations are presented, proven, and their characteristics discussed. Although the power sums have a basic form, their results have quite different properties, dependent on the values of the free parameters used. From these equations, a large variety of power reduction formulas can be derived. This is shown by some examples.
基金supported by the National Natural Science Foundation of China(GrantNo.10871087)the Overseas Cooperation Fund of China(Grant No.10928101)
文摘Let p 〉 3 be a prime. A p-adic congruence is called a super congruence if it happens to hold modulo some higher power of p. The topic of super congruences is related to many fields including Gauss and Jacobi sums and hypergeometric series. We prove that ∑k=0^p-1(k^2k/2k)≡(-1)^(p-1)/2-p^2Ep-3(modp^3) ∑k=1^(p-1)/2(k^2k)/k≡(-1)^(p+1)/2 8/3pEp-3(mod p^2),∑k=0^(p-1)/2(k^2k)^2/16k≡(-1)^(p-1)/2+p^2Ep-3(mod p^3),where E0, E1, E2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by our investigation of super congruences, we also raise a conjecture on 7 new series for π2, π-2 and the constant K := ∑k=1^∞(k/3)/k^2 (with (-) the Jacobi symbol), two of which are ∑k=1^∞(10k-3)8k/k2(k^2k)^2(k^3k)=π^2/2and ∑k=1^∞(15k-4)(-27)^k-1/k^3(k^2k)^2(k^3k)=K.