This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ...This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.展开更多
Verification and validation(V&V)is a helpful tool for evaluating simulation errors,but its application in unsteady cavitating flow remains a challenging issue due to the difficulty in meeting the requirement of an...Verification and validation(V&V)is a helpful tool for evaluating simulation errors,but its application in unsteady cavitating flow remains a challenging issue due to the difficulty in meeting the requirement of an asymptotic range.Hence,a new V&V approach for large eddy simulation(LES)is proposed.This approach offers a viable solution for the error estimation of simulation data that are unable to satisfy the asymptotic range.The simulation errors of cavitating flow around a projectile near the free surface are assessed using the new V&V method.The evident error values are primarily dispersed around the cavity region and free surface.The increasingly intense cavitating flow increases the error magnitudes.In addition,the modeling error magnitudes of the Dynamic Smagorinsky-Lilly model are substantially smaller than that of the Smagorinsky-Lilly model.The present V&V method can capture the decrease in the modeling errors due to model enhancements,further exhibiting its applicability in cavitating flow simulations.Moreover,the monitoring points where the simulation data are beyond the asymptotic range are primarily dispersed near the cavity region,and the number of such points grows as the cavitating flow intensifies.The simulation outcomes also suggest that the re-entrant jet and shedding cavity collapse are the chief sources of vorticity motions,which remarkably affect the simulation accuracy.The results of this study provide a valuable reference for V&V research.展开更多
The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in th...The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.展开更多
The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Nort...The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.展开更多
Cavitating jet is widely used in drilling,rock cutting and ocean re source exploitation because of its stro ng erosion ability.The analysis of the relationship between the flow characteristics and the structure of cav...Cavitating jet is widely used in drilling,rock cutting and ocean re source exploitation because of its stro ng erosion ability.The analysis of the relationship between the flow characteristics and the structure of cavitating jet nozzle is critical.Here,we utilized 3 D printed technology and high-speed photography to design visualization experime nts to analyse the impact of the variation of resonator and throat size of the organ-pipe self-resonating cavitating nozzles on the cavitation characteristics through image processing.The velocity field,pressure field and vapor volume fraction injected by the nozzle were taken as the objective functions to study the influence of different structural parameters on the cavitation effect based on FLUENT 19.0 software,and the results were compared with the experimental results.The results show that increasing the length and diameter of the resonator contributes to the occurrence of cavitation and the structure stability of the flow field.However,excessive size affects self-resonant of the nozzle and makes it difficult to form resonance effect.In this study,the optimal values of nozzle throat length and divergent angle are twice the throat diameter and 40°,respectively.This research provides an integrated research method to study the optimization of self-resonating nozzle and cavitating jet characteristics.展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady...Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.展开更多
The Reynolds-averaged Navier-Stokes(RANS),such as the original k-ω two-equation closures,have been very popular in providing good prediction for a wide variety of flows with presently available computational resour...The Reynolds-averaged Navier-Stokes(RANS),such as the original k-ω two-equation closures,have been very popular in providing good prediction for a wide variety of flows with presently available computational resource.But for cavitating flows,the above equations noticeably over-predict turbulent production and hence effective viscosity.In this paper,the detached eddy simulation(DES) method for time-dependent turbulent cavitating flows is investigated.To assess the state-of-the-art of computational capabilities,different turbulence models including the widely used RANS model and DES model are conducted.Firstly,in order to investigate the grid dependency in computations,different grid sizes are adopted in the computation.Furthermore,the credibility of DES model is supported by the unsteady cavitating flows over a 2D hydrofoil.The results show that the DES model can effectively reduce the eddy viscosities.From the experimental validations regarding the force analysis,frequency and the unsteady cavity visualizations,more favorable agreement with experimental visualizations and measurements are obtained by DES model.DES model is better able to capture unsteady phenomena including cavity length and the resulting hydrodynamic characteristics,reproduces the time-averaged velocity quantitatively around the hydrofoil,and yields more acceptable and unsteady dynamics features.The DES model has shown to be effective in improving the overall predictive capability of unsteady cavitating flows.展开更多
Rapid solution mining is the key to cavern construction in salt formations. Rapid solution mining technology with self-resonating cavitating water jets is described in this paper. It can generate three main physical e...Rapid solution mining is the key to cavern construction in salt formations. Rapid solution mining technology with self-resonating cavitating water jets is described in this paper. It can generate three main physical effects: helical flow dissolution, self-resonating cavitating jet erosion, and ultrasonic waves. A self-resonating cavitating nozzle was also designed with the principles based on theory of fluid transients and hydro-acoustics. Under ambient pressure, the experimental results show that the impulse amplitude of pressure reaches a peak at a standoff distance of 5-13 times the nozzle outlet diameter and the cutting ability of self-resonating cavitating jets is twice that of conventional jets under the same conditions. Compared with the conventional mining method, the field test indicates that rapid solution mining technology with self-resonating cavitating jets can speed the construction by more than 2 times at the pocket stage of cavern development.展开更多
Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present...Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.展开更多
Large eddy simulation(LES)was coupled with a homogeneous cavitation model to study turbulent cavitating flows around a sphere.The simulations are in good agreement with available experimental data and the simulated ac...Large eddy simulation(LES)was coupled with a homogeneous cavitation model to study turbulent cavitating flows around a sphere.The simulations are in good agreement with available experimental data and the simulated accuracy has been evaluated using the LES verification and validation method.Various cavitation numbers are simulated to study important flow characteristics in the sphere wake,e.g.periodic cavity growth/contraction,interactions between the cloud and sheet cavitations and the vortex structure evolution.The spectral characteristics of the wake for typical cloud cavitation conditions were classified as the periodic cavitation mode,high Strouhal number mode and low Strouhal number mode.Main frequency distributions in the wake were analyzed and different dominant flow structures were identified for each of the three modes.Further,the cavitation and vortex relationship was also studied,which is an important issue associated with complex cavitating sphere wakes.Three types of cavitating vortex structures alternate,which indicates that three different cavity shedding regimes may exist in the wake.Analysis of vorticity transport equation shows a significant vorticity increase at the cavitation closure region and in the vortex cavitation region.This study provides a physical perspective to further understand the flow mechanisms in cavitating sphere wakes.展开更多
Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the ef...Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.展开更多
The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been in...The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.展开更多
To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By us...To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.展开更多
The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the ch...The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the characteristics of the jet are rarely available.In order to further improve the performance of SRCW,effects of area discontinuity(enlargement and contraction) are experimentally investigated using three organ-pipe nozzles.Axial pressure oscillation peak and amplitude as well as aggressive erosion intensity of the jet are used to evaluate the effects.The results reveal that area enlargement and contraction affect the peak differently,depending on the inlet pressure,nozzle geometry,and standoff distance;while area contraction always improves the amplitude regardless of these factors.At inlet pressures of 10 MPa and 20 MPa,area discontinuity improves the peak at almost all the testing standoff distances,while this only happens at smaller standoff distances with the inlet pressure increased to 30 MPa.The capability of area discontinuity for improving the amplitude is enhancing with increasing inlet pressure.Moreover,the cavitation erosion ability of the jet can be largely enhanced around the optimum standoff distance,depending on the type of area discontinuity and nozzle geometry.A preliminary analysis of the influence of area discontinuity on the disturbance waves in the flow is also performed.The proposed research provides a new method for effectively enhancing the performance of SRCW.展开更多
Nowadays,most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects,such as 2D/3D hydrofoils,venturi-type section,axisymmetric bodies with different headforms,and so o...Nowadays,most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects,such as 2D/3D hydrofoils,venturi-type section,axisymmetric bodies with different headforms,and so on.But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object.In the present study,two kinds of shedding patterns are investigated experimentally.A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry(PIV)technique in a water tunnel for different cavitation conditions.The U-type cavitating vortex shedding is observed in unsteady cavitating flows.When the cavitation number is 0.7,there is a large scale cavity rolling up and shedding,which cause the instability and dramatic fluctuation of the flows,while at cavitation number of 0.6,the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity,as a result,the final shedding is in the form of small scale cavity and keeps a relatively steady flow field.It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality.When the attached cavity scale is insufficient to overcome the re-entrant flow,it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7.Otherwise,the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of0.6.This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.展开更多
Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat ex...Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat exchange between cavitation bubble and ambient fluid. With this model, the influence factors on the cavitation intensity are investigated. The results show that the destructiveness of cavitating jet in breaking rocks depends on the bubble's first collapse, with decreasing intensity in the subsequent collapses. The self-resonating effect significantly enhances the cavitation intensity by promoting the collapse pressure and elongating its duration. Hydraulic parameters are proven to be the dominating factors influencing cavitation intensity: while collapse intensity monotonously increases with jet velocity, there exists an optimum ambient pressure where highest collapse intensity can be achieved. Conversely, the fluid properties show minor influences: cavitation intensity only slightly decreases with the increasing of fluid's density and barely changes with the variation of viscosity and surface tension. The results from this investigation help to uncover the mechanism of the enhanced erosion potential of self-resonating cavitating jet. The conclusions can be used to further improve the performance of self-resonating cavitating jet in field applications.展开更多
Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicle...Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software Open FOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles.展开更多
This paper deals with the statistical properties of unsteady structure of cavitating water-jet issuing into a stagnant fluid of water using the shadowgraph imaging combined with the proper orthogonal decomposition (PO...This paper deals with the statistical properties of unsteady structure of cavitating water-jet issuing into a stagnant fluid of water using the shadowgraph imaging combined with the proper orthogonal decomposition (POD) analysis. The experimental result indicates that the cavitating jet is composed of axisymmetric mode, while the periodic axial oscillation is found along the jet centerline. The reconstructed cavitation images show the presence of growing, shrinking and shedding motion in the cavitation cloud, which sustains a periodic behavior of the cavitating jet.展开更多
The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in go...The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in good accordance with those obtained by fast Fourier transform.Furthermore,the cavitating flow field is reconstructed by the first four modes,and the dominant flow features are well captured with the reconstructed error below 12%when compared to the simulated flow field.This paper offers a reference for observing and reconstructing the flow fields,and gives a novel insight into the transient cavitating flow features.展开更多
文摘This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.
基金Supported by the National Key R&D Program of China(2022YFB3303501)the National Natural Science Foundation of China(Project Nos.52176041 and 12102308)the Fundamental Research Funds for the Central Universities(Project Nos.2042023kf0208 and 2042023kf0159).
文摘Verification and validation(V&V)is a helpful tool for evaluating simulation errors,but its application in unsteady cavitating flow remains a challenging issue due to the difficulty in meeting the requirement of an asymptotic range.Hence,a new V&V approach for large eddy simulation(LES)is proposed.This approach offers a viable solution for the error estimation of simulation data that are unable to satisfy the asymptotic range.The simulation errors of cavitating flow around a projectile near the free surface are assessed using the new V&V method.The evident error values are primarily dispersed around the cavity region and free surface.The increasingly intense cavitating flow increases the error magnitudes.In addition,the modeling error magnitudes of the Dynamic Smagorinsky-Lilly model are substantially smaller than that of the Smagorinsky-Lilly model.The present V&V method can capture the decrease in the modeling errors due to model enhancements,further exhibiting its applicability in cavitating flow simulations.Moreover,the monitoring points where the simulation data are beyond the asymptotic range are primarily dispersed near the cavity region,and the number of such points grows as the cavitating flow intensifies.The simulation outcomes also suggest that the re-entrant jet and shedding cavity collapse are the chief sources of vorticity motions,which remarkably affect the simulation accuracy.The results of this study provide a valuable reference for V&V research.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.52336001)the Natural Science Foundation of Zhejiang Province of China(No.LR20E090001)。
文摘The Lagrangian integral time scale(LITS)is a crucial characteristic for investigating the changes in fluid dynamics induced by the chaotic nature,and the finitetime Lyapunov exponent(FTLE)serves as a key measure in the analysis of chaos.In this study,a new LITS model with an explicit theoretical basis and broad applicability is proposed based on the FTLE,along with a verification and evaluation criterion grounded in the Lagrangian velocity correlation coefficient.The model is used to cavitating the flow around a Clark-Y hydrofoil,and the LITS is investigated.It leads to the determination of model constants applicable to cavitating flow.The model is evaluated by the Lagrangian velocity correlation coefficient in comparison with other solution methods.All the results show that the LITS model can offer a new perspective and a new approach for studying the changes in fluid dynamics from a Lagrangian viewpoint.
文摘The authors designed three different front profiles for supercavitating vehicles based on cavity theory and the Granville streamlined equation are designed. Experiments were done using these front profiles in the Northwestern Polytechnical University high-speed water tunnel. The experiments indicated that the critical volume of gas required for supercavitation is affected by the axial distribution of the front-end's slope. The experimental data showed critical gas flow rates required for the three designs were less than rood-l, with the greatest decrease 24%. The experimental results also showed the supercavitation generation speeds of the models were faster than mod-1 by up to 32.4%. This verifies that the front profile of a supercaviting vehicle effects supercavity generation speed and critical gas flow rates. The smaller the changes in axial distribution of pressure, the higher the supercavity generation speed. The smaller the changes in curvature distribution of axial, the smaller the critical gas flow rates.
基金financially supported by National Key Research and Development Program of China(No.2019YFB1504202)National Natural Science Foundation of China(No.52174009)State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1905)。
文摘Cavitating jet is widely used in drilling,rock cutting and ocean re source exploitation because of its stro ng erosion ability.The analysis of the relationship between the flow characteristics and the structure of cavitating jet nozzle is critical.Here,we utilized 3 D printed technology and high-speed photography to design visualization experime nts to analyse the impact of the variation of resonator and throat size of the organ-pipe self-resonating cavitating nozzles on the cavitation characteristics through image processing.The velocity field,pressure field and vapor volume fraction injected by the nozzle were taken as the objective functions to study the influence of different structural parameters on the cavitation effect based on FLUENT 19.0 software,and the results were compared with the experimental results.The results show that increasing the length and diameter of the resonator contributes to the occurrence of cavitation and the structure stability of the flow field.However,excessive size affects self-resonant of the nozzle and makes it difficult to form resonance effect.In this study,the optimal values of nozzle throat length and divergent angle are twice the throat diameter and 40°,respectively.This research provides an integrated research method to study the optimization of self-resonating nozzle and cavitating jet characteristics.
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
文摘Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.
基金supported by National Natural Science Foundation of China (Grant No.11172040)
文摘The Reynolds-averaged Navier-Stokes(RANS),such as the original k-ω two-equation closures,have been very popular in providing good prediction for a wide variety of flows with presently available computational resource.But for cavitating flows,the above equations noticeably over-predict turbulent production and hence effective viscosity.In this paper,the detached eddy simulation(DES) method for time-dependent turbulent cavitating flows is investigated.To assess the state-of-the-art of computational capabilities,different turbulence models including the widely used RANS model and DES model are conducted.Firstly,in order to investigate the grid dependency in computations,different grid sizes are adopted in the computation.Furthermore,the credibility of DES model is supported by the unsteady cavitating flows over a 2D hydrofoil.The results show that the DES model can effectively reduce the eddy viscosities.From the experimental validations regarding the force analysis,frequency and the unsteady cavity visualizations,more favorable agreement with experimental visualizations and measurements are obtained by DES model.DES model is better able to capture unsteady phenomena including cavity length and the resulting hydrodynamic characteristics,reproduces the time-averaged velocity quantitatively around the hydrofoil,and yields more acceptable and unsteady dynamics features.The DES model has shown to be effective in improving the overall predictive capability of unsteady cavitating flows.
基金support from the Projects of EU-CHINA Energy and Environment Program(Europe Aid-120723-D-SV-CN)the Ph.D Programs Foundation of Ministry of Education of China (No.20070425006)
文摘Rapid solution mining is the key to cavern construction in salt formations. Rapid solution mining technology with self-resonating cavitating water jets is described in this paper. It can generate three main physical effects: helical flow dissolution, self-resonating cavitating jet erosion, and ultrasonic waves. A self-resonating cavitating nozzle was also designed with the principles based on theory of fluid transients and hydro-acoustics. Under ambient pressure, the experimental results show that the impulse amplitude of pressure reaches a peak at a standoff distance of 5-13 times the nozzle outlet diameter and the cutting ability of self-resonating cavitating jets is twice that of conventional jets under the same conditions. Compared with the conventional mining method, the field test indicates that rapid solution mining technology with self-resonating cavitating jets can speed the construction by more than 2 times at the pocket stage of cavern development.
基金financially supported by National Natural Science Foundation of China(No.52174009 and No.51827804)Marine Economy Development Foundation of Guangdong Province(GDNRC[2022]44)“Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs”.
文摘Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.
基金This work was financially supported by the National Natural Science Foundation of China(Grants 51822903 and 11772239)the Natural Science Foundation of Hubei Province(Grant 2018CFA010).The numerical calculations were done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘Large eddy simulation(LES)was coupled with a homogeneous cavitation model to study turbulent cavitating flows around a sphere.The simulations are in good agreement with available experimental data and the simulated accuracy has been evaluated using the LES verification and validation method.Various cavitation numbers are simulated to study important flow characteristics in the sphere wake,e.g.periodic cavity growth/contraction,interactions between the cloud and sheet cavitations and the vortex structure evolution.The spectral characteristics of the wake for typical cloud cavitation conditions were classified as the periodic cavitation mode,high Strouhal number mode and low Strouhal number mode.Main frequency distributions in the wake were analyzed and different dominant flow structures were identified for each of the three modes.Further,the cavitation and vortex relationship was also studied,which is an important issue associated with complex cavitating sphere wakes.Three types of cavitating vortex structures alternate,which indicates that three different cavity shedding regimes may exist in the wake.Analysis of vorticity transport equation shows a significant vorticity increase at the cavitation closure region and in the vortex cavitation region.This study provides a physical perspective to further understand the flow mechanisms in cavitating sphere wakes.
基金supported by the National Natural Science Foundation of China(Grant No.51479177).
文摘Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51635004, 11472078)。
文摘The water-lubricated bearings are usually the state of turbulent cavitating flow under high-speed conditions. And the distribution of cavitation bubbles and the interface effect between the two phases have not been included in previous studies on high-speed water-lubricated bearings. In order to study the influence of interface effect and cavitation bubble distribution on the dynamic characteristics of high-speed water-lubricated spiral groove thrust bearings(SGTB).A turbulent cavitating flow lubrication model based on two-phase fluid and population balance equation of bubbles was established in this paper. Stiffness and the damping coefficients of the SGTB were calculated using the perturbation pressure equations. An experimental apparatus was developed to verify the theoretical model. Simulating and experimental results show that the small-sized bubbles tend to generate in the turbulent cavitating flow when at a high rotary speed, and the bubbles mainly locate at the edges of the spiral groove. The simulating results also show that the direct stiffness coefficients are increased due to cavitation effect, and cross stiffness coefficients and damping coefficients are hardly affected by the cavitation effect. Turbulent effect on the dynamic characteristics of SGTB is much stronger than the cavitating effect.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 51309230), and China Postdoctoral Science Foundation (Nos. 2014T70992 and 2013 M542531)We would like to thank Dr. Tao Miao for closely following our work and making several useful suggestions.
文摘To deal with the effect of compressible fluids on the supercavitating flow over the subsonic disk cavitator of a projectile, a finite volume method is formulated based on the ideal compressible potential theory. By using the continuity equation and Tait state equation as well as Riabouchinsky closure model, an“inverse problem”solution is presented for the supercavitating flow. According to the impenetrable condition on the surface of supercavity, a new iterative method for the supercavity shape is designed to deal with the effect of compressibility on the supercavity shape, pressure drag coefficient and density field. By this method, the very low cavitation number can be computed. The calculated results agree well with the experimental data and empirical formula. At the subsonic condition, the fluid compressibility will make supercavity length and radius increase. The supercavity expands, but remains spheroid. The effect on the first 1/3 part of supercavity is not obvious. The drag coefficient of projectile increases as the cavitation number or Mach number increases. With Mach number increasing, the compressibility is more and more significant. The compressibility must be considered as far as the accurate calculation of supercavitating flow is concerned.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB239203)National Natural Science Foundation of China(Grant No.51474158)China Scholarship Council(Grant No.201406270047)
文摘The current research on self-resonating cavitating waterjet(SRCW) mainly focuses on the generation mechanism and structure optimization.Researches relating to the influences of disturbances at nozzle inlet on the characteristics of the jet are rarely available.In order to further improve the performance of SRCW,effects of area discontinuity(enlargement and contraction) are experimentally investigated using three organ-pipe nozzles.Axial pressure oscillation peak and amplitude as well as aggressive erosion intensity of the jet are used to evaluate the effects.The results reveal that area enlargement and contraction affect the peak differently,depending on the inlet pressure,nozzle geometry,and standoff distance;while area contraction always improves the amplitude regardless of these factors.At inlet pressures of 10 MPa and 20 MPa,area discontinuity improves the peak at almost all the testing standoff distances,while this only happens at smaller standoff distances with the inlet pressure increased to 30 MPa.The capability of area discontinuity for improving the amplitude is enhancing with increasing inlet pressure.Moreover,the cavitation erosion ability of the jet can be largely enhanced around the optimum standoff distance,depending on the type of area discontinuity and nozzle geometry.A preliminary analysis of the influence of area discontinuity on the disturbance waves in the flow is also performed.The proposed research provides a new method for effectively enhancing the performance of SRCW.
基金Supported by National Natural Science Foundation of China(Grant Nos.51209004,11172040)Beijing Municipal Natural Science Foundation of China(Grant No.3144043)
文摘Nowadays,most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects,such as 2D/3D hydrofoils,venturi-type section,axisymmetric bodies with different headforms,and so on.But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object.In the present study,two kinds of shedding patterns are investigated experimentally.A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry(PIV)technique in a water tunnel for different cavitation conditions.The U-type cavitating vortex shedding is observed in unsteady cavitating flows.When the cavitation number is 0.7,there is a large scale cavity rolling up and shedding,which cause the instability and dramatic fluctuation of the flows,while at cavitation number of 0.6,the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity,as a result,the final shedding is in the form of small scale cavity and keeps a relatively steady flow field.It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality.When the attached cavity scale is insufficient to overcome the re-entrant flow,it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7.Otherwise,the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of0.6.This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.
基金Supported by the National Natural Science Foundation of China(51674275,U1562212,51521063)
文摘Based on bubble dynamics theory, a mathematic model describing the cavitation bubble size variation in the flow field of self-resonating cavitating jet was developed considering the pressure field and mass and heat exchange between cavitation bubble and ambient fluid. With this model, the influence factors on the cavitation intensity are investigated. The results show that the destructiveness of cavitating jet in breaking rocks depends on the bubble's first collapse, with decreasing intensity in the subsequent collapses. The self-resonating effect significantly enhances the cavitation intensity by promoting the collapse pressure and elongating its duration. Hydraulic parameters are proven to be the dominating factors influencing cavitation intensity: while collapse intensity monotonously increases with jet velocity, there exists an optimum ambient pressure where highest collapse intensity can be achieved. Conversely, the fluid properties show minor influences: cavitation intensity only slightly decreases with the increasing of fluid's density and barely changes with the variation of viscosity and surface tension. The results from this investigation help to uncover the mechanism of the enhanced erosion potential of self-resonating cavitating jet. The conclusions can be used to further improve the performance of self-resonating cavitating jet in field applications.
基金the National Nature Science Foundation of China (11332011 and 11202215)
文摘Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software Open FOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles.
文摘This paper deals with the statistical properties of unsteady structure of cavitating water-jet issuing into a stagnant fluid of water using the shadowgraph imaging combined with the proper orthogonal decomposition (POD) analysis. The experimental result indicates that the cavitating jet is composed of axisymmetric mode, while the periodic axial oscillation is found along the jet centerline. The reconstructed cavitation images show the presence of growing, shrinking and shedding motion in the cavitation cloud, which sustains a periodic behavior of the cavitating jet.
基金the National Key R&D Program of China(Grants 2016YFC0300800 and 2016YFC0300802)the National Natural Science Foundation of China(Grants 11772340 and 11672315)the Science and Technology on Water Jet Propulsion Laboratory(Grant 6142223190101).
文摘The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in good accordance with those obtained by fast Fourier transform.Furthermore,the cavitating flow field is reconstructed by the first four modes,and the dominant flow features are well captured with the reconstructed error below 12%when compared to the simulated flow field.This paper offers a reference for observing and reconstructing the flow fields,and gives a novel insight into the transient cavitating flow features.