Inferring causal protein signalling networks from human immune system cell data is a promising approach to unravel the underlying tissue signalling biology and dysfunction in diseased cells,which has attracted conside...Inferring causal protein signalling networks from human immune system cell data is a promising approach to unravel the underlying tissue signalling biology and dysfunction in diseased cells,which has attracted considerable attention within the bioinformatics field.Recently,Bayesian network(BN)techniques have gained significant popularity in inferring causal protein signalling networks from multiparameter single-cell data.However,current BN methods may exhibit high computational complexity and ignore interactions among protein signalling molecules from different single cells.A novel BN method is presented for learning causal protein signalling networks based on parallel discrete artificial bee colony(PDABC),named PDABC.Specifically,PDABC is a score-based BN method that utilises the parallel artificial bee colony to search for the global optimal causal protein signalling networks with the highest discrete K2 metric.The experimental results on several simulated datasets,as well as a previously published multi-parameter fluorescence-activated cell sorter dataset,indicate that PDABC surpasses the existing state-of-the-art methods in terms of performance and computational efficiency.展开更多
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from...The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62106009,62276010R&D Program of Beijing Municipal Education Commission,Grant/Award Numbers:KM202210005030,KZ202210005009。
文摘Inferring causal protein signalling networks from human immune system cell data is a promising approach to unravel the underlying tissue signalling biology and dysfunction in diseased cells,which has attracted considerable attention within the bioinformatics field.Recently,Bayesian network(BN)techniques have gained significant popularity in inferring causal protein signalling networks from multiparameter single-cell data.However,current BN methods may exhibit high computational complexity and ignore interactions among protein signalling molecules from different single cells.A novel BN method is presented for learning causal protein signalling networks based on parallel discrete artificial bee colony(PDABC),named PDABC.Specifically,PDABC is a score-based BN method that utilises the parallel artificial bee colony to search for the global optimal causal protein signalling networks with the highest discrete K2 metric.The experimental results on several simulated datasets,as well as a previously published multi-parameter fluorescence-activated cell sorter dataset,indicate that PDABC surpasses the existing state-of-the-art methods in terms of performance and computational efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos.7110317971102129+1 种基金11121403by Program for Young Innovative Research Team in China University of Political Science and Law
文摘The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.