Trace Ⅴ(Ⅴ) catalyzes mightily the decolorization reaction of arsenazo Ⅲ(AsA Ⅲ) by oxidizing with H_2O_2 in a pH 4.0 HAc-NaAc buffer solution, and the addition of TritonX-100 can further increase the sensitivity of...Trace Ⅴ(Ⅴ) catalyzes mightily the decolorization reaction of arsenazo Ⅲ(AsA Ⅲ) by oxidizing with H_2O_2 in a pH 4.0 HAc-NaAc buffer solution, and the addition of TritonX-100 can further increase the sensitivity of the reaction and its catalytic extent is linear withthe content of Ⅴ(Ⅴ). A catalytic spectrophotometric procedure for determining trace Ⅴ(Ⅴ)wasdeveloped. The results show that the maximun absorption of the color solution is at 560 nm and thedetection limit of the method for Ⅴ(Ⅴ) is 0.014 mg·L^(-1). Beer's law is obeyed for Ⅴ(Ⅴ) in therange of 0.00-0.20 mg·L^(-1). The recoveries are 99.0%-104.6%, and the relative standarddeviations (RSD) are 2.7%-3.7%. Combined with ion-exchange resin, the method has been applied to thedetermination of trace vanadium in fly ash and coal gangue with satisfactory results.展开更多
文摘Trace Ⅴ(Ⅴ) catalyzes mightily the decolorization reaction of arsenazo Ⅲ(AsA Ⅲ) by oxidizing with H_2O_2 in a pH 4.0 HAc-NaAc buffer solution, and the addition of TritonX-100 can further increase the sensitivity of the reaction and its catalytic extent is linear withthe content of Ⅴ(Ⅴ). A catalytic spectrophotometric procedure for determining trace Ⅴ(Ⅴ)wasdeveloped. The results show that the maximun absorption of the color solution is at 560 nm and thedetection limit of the method for Ⅴ(Ⅴ) is 0.014 mg·L^(-1). Beer's law is obeyed for Ⅴ(Ⅴ) in therange of 0.00-0.20 mg·L^(-1). The recoveries are 99.0%-104.6%, and the relative standarddeviations (RSD) are 2.7%-3.7%. Combined with ion-exchange resin, the method has been applied to thedetermination of trace vanadium in fly ash and coal gangue with satisfactory results.