To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring ...To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.展开更多
The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu...The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.展开更多
The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-cast...The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It ...Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It plays a pivotal role in fabricating intricate,high-quality components.After its inception in the early 1900s,various CGC processes have emerged,such as low-pressure,counter-pressure,vac-uum suction,and adjusted pressure casting,which are explored in this discourse with an eye toward further advancements.Despite CGC’s superiority over traditional gravity casting and other manufacturing methodologies,specific issues and constraints persist within CGC.This paper endeavors to provide a com-prehensive overview of the historical progression of CGC,its recent developments,and the associated re-search aspects,encompassing topics like filling processes,solidification,microstructural transformations,and the resultant mechanical properties of the fabricated products.Additionally,this paper offers insights into the future challenges and opportunities of CGC.展开更多
This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part wei...This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.展开更多
The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electr...The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large de...The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.展开更多
The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and...The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r...The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by th...The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.展开更多
Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate mode...Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process.展开更多
Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and ...Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and 20 h)in different casting zones(casting center and transition zone)on the microstructure and mechanical properties of non-standard heavy-section ferritic ductile iron(EN-GJS-400-15)castings.The different solidification conditions significantly influenced the microstructure(graphite and ferrous matrix).The extent of phenomena such as degenerate graphite,solidification defects,hard carbides,and intergranular pearlitic areas and the microstructural coarsening were proportional to the solidification time and attributable to the combined effect of limited undercooling,solid solution diffusion mechanisms,and segregation phenomena.For comparable solidification time,the transition zone was characterized by larger nodules,comparable nodularity,and lower nodule count than the casting center due to more effective diffusion phenomena during cooling.Moreover,the lower segregation phenomena in the transition zone reduced the amount of pearlite and carbides in the intercellular zones.Hardness was only slightly influenced by the different solidification conditions and did not represent a reliable indicator of the microstructural inhomogeneities.These results are essential to refine casting simulations for producing large ferritic ductile iron castings,considering the wide microstructural variability within non-standard heavy-section castings caused by significantly different solidification conditions.展开更多
This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and te...This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.展开更多
The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and...The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 5186504)the University Science Foundation for Young Science and Technology Talents in Inner Mongolia Autonomous Region of China (Grant No. NJYT22078)+2 种基金the Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region (Grant No. JY20220059)the Inner Mongolia Autonomous Region ‘Grassland Talent’ project Young Innovative Talent Training Program Level ⅠBasic Research Expenses of Universities directly under the Inner Mongolia Autonomous Region (Grant No. ZTY2023040)。
文摘To develop a suitable production process for fiber reinforced investment casting shell mold,three methods were studied:the traditional method(M_(1)),the method of adding fiber into silica sol with mechanical stirring and ultrasonic agitation(M_(2)),and the method of adding fiber into slurry with mechanical stirring and ultrasonic agitation for durations of 3,15,30,and 45 min(M_(3)).The bending strength,high-temperature self-load deformation,and thermal conductivity of the shell molds were investigated.The results reveal that the enhancement of fiber dispersion through ultrasonic agitation improves the comprehensive performance of the shell molds.The maximum green bending strength of the shell mold by M_(2) reaches 3.29 MPa,which is 29% higher than that of the shell mold prepared by M_(1).Moreover,the high-temperature self-load deformation of the shell mold is reduced from 0.62% to 0.44%.In addition,simultaneous ultrasonic agitation and mechanical stirring effectively shorten the slurry preparation time while maintaining comparable levels of fiber dispersion.With the process M_(3)-45 min,the fillers are uniformly dispersed in the slurry,and the fired bending strength and the high-temperature self-load deformation reach 6.25 MPa and 0.41%,respectively.Therefore,the proposed ultrasonic agitation route is promising for the fabrication of fiber-reinforced shell molds with excellent fibers dispersion.
基金financially supported by the Natural Science Foundation of Liaoning Province of China(2022-MS-109)the Key Research and Development Program of Liaoning Province(2023JH2/101800045)the Ministry of Science and Technology of the Peoples Republic of China(ZZ2021006).
文摘The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.
基金the National Key Research and Development Program of China(Grant No.2022YFB3404201)the National Natural Science Foundation of China(Grant Nos.52175335,52405342)+1 种基金the Natural Science Foundation Joint Foundation of Liaoning province(Grant No.2023-B SB A-108)the Fundamental Research Funds for the Central Universities(Grant No.N2402005)。
文摘The effects of the high pressure die casting(HPDC)processes on porosity,microstructure,and mechanical properties of heat-treatment-free aluminum silicon(Al-Si)alloys have long been a focal point in automotive die-casting research.In this work,the combined effect of shot sleeve materials and slow shot speeds on porosity,microstructure and mechanical properties of a newly designed HPDC Al-Si alloy was investigated.Results show that employing a ceramic shot sleeve or increasing the slow shot speed significantly reduces both the average size and area fraction of externally solidified crystals(ESCs),as well as the average pore size and volume fraction.When the slow shot speed is increased from 0.05 m·s^(-1)to 0.1 m·s^(-1),the pore volume fraction decreases by 10.2%in steel-shot-sleeve samples,compared to a substantial 67.1%reduction in ceramic-shot-sleeve samples.At a slow shot speed of 0.1 m·s^(-1),castings produced with a ceramic shot sleeve exhibit superior mechanical properties:8.3%higher yield strength,17.4%greater tensile strength,and an 81.4%improvement in elongation,relative to those from a steel shot sleeve.These findings provide valuable insights for minimizing porosity and coarse ESCs in die castings,offering promising potential for broader industrial applications.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
基金supported by the National Sci-ence and Technology Major Project of China(No.J2019-VI-0004-0117)the National Natural Science Foundation of China(Nos.52071205 and 51821001)+2 种基金the Aeronautical Science Fund of China(No.2023Z053057003)the Science and Technology Commission of Shanghai Municipality,China(No.23ZR1428800)the Shanghai Industrial Collaborative Innovation Project(No.XTCX-KJ-2022-41).
文摘Counter-gravity casting(CGC)is a widely adopted material processing technique in metals due to its notable benefits,including enhanced filling behavior,reduced defect occurrence,and elevated mechani-cal properties.It plays a pivotal role in fabricating intricate,high-quality components.After its inception in the early 1900s,various CGC processes have emerged,such as low-pressure,counter-pressure,vac-uum suction,and adjusted pressure casting,which are explored in this discourse with an eye toward further advancements.Despite CGC’s superiority over traditional gravity casting and other manufacturing methodologies,specific issues and constraints persist within CGC.This paper endeavors to provide a com-prehensive overview of the historical progression of CGC,its recent developments,and the associated re-search aspects,encompassing topics like filling processes,solidification,microstructural transformations,and the resultant mechanical properties of the fabricated products.Additionally,this paper offers insights into the future challenges and opportunities of CGC.
基金supported by the National Natural Science Foundation of China(No.52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201).
文摘This study investigates the formation feasibility of the integrated bottom car body components with dual die casting injection molding technology.During the production of a die-cast super-large one-piece body part weighing over 10,000 t,a thorough comparison and investigation were conducted on the arising issues,using both single and double injection systems.Particular attention was given to meticulously discussing the die casting filling problems and microstructural defects that originated from the filling process.The research findings indicate that the implementation of a double injection system can significantly minimize cold shuts and reduce the solidification time.The effectiveness of this die casting technique was further confirmed by the production of high-quality castings using a scaled model that replicated real casting conditions at a 1:3 ratio,thereby maintaining a one-to-one correspondence in essential aspects.This successful study offers both theoretical insights and practical applications for the production of integrated bottom car bodies utilizing die casting in conjunction with a dual injection system.
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The influences of two kinds of casting modules of metal casting (MC) and expandable pattern casting (EPC) on the corrosion behavior of Mg-11Gd-3Y alloy were studied by electrochemical measurements, scanning electron microscopy (SEM) observation, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. It is found that the quantity of the Mg 24 (Gd, Y) 5 phase in MC is more than that in EPC due to the cooling rate. There is more alloying element dissolved in the matrix compared with MC. For EPC, the galvanic corrosion effect between the matrix and the Mg 24 (Gd, Y) 5 phase decreases and the corrosion resistance increases compared with the MC. The chief corrosion mode for Mg-11Gd-3Y alloy is pitting corrosion because most of the alloying elements are transformed into intermetallic phases. The average corrosion rate of the MC alloy in the immersion test is five times higher than that of EPC alloy and yttrium is present in the product film, which will provide increased protection for Mg-11Gd-3Y alloy. The electrochemical measurements and immersion test show that the EPC process increases the corrosion resistance compared with the MC Mg-11Gd-3Y alloy.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金supported by the National Natural Science Foundation of China(No.52474355)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project),China(Nos.2022JH25/10200003 and 2023JH2/101800058).
文摘The application of liquid core reduction(LCR)technology in thin slab continuous casting can refine the internal microstruc-tures of slabs and improve their production efficiency.To avoid crack risks caused by large deformation during the LCR process and to minimize the thickness of the slab in bending segments,the maximum theoretical reduction amount and the corresponding reduction scheme for the LCR process must be determined.With SPA-H weathering steel as a specific research steel grade,the distributions of tem-perature and deformation fields of a slab with the LCR process were analyzed using a three-dimensional thermal-mechanical finite ele-ment model.High-temperature tensile tests were designed to determine the critical strain of corner crack propagation and intermediate crack initiation with various strain rates and temperatures,and a prediction model of the critical strain for two typical cracks,combining the effects of strain rate and temperature,was proposed by incorporating the Zener-Hollomon parameter.The crack risks with different LCR schemes were calculated using the crack risk prediction model,and the maximum theoretical reduction amount for the SPA-H slab with a transverse section of 145 mm×1600 mm was 41.8 mm,with corresponding reduction amounts for Segment 0 to Segment 4 of 15.8,7.3,6.5,6.4,and 5.8 mm,respectively.
基金National Natural Science Foundation of China(52201054,52175368)National Science and Technology Major Projects(J2019-VI-0018-0133)+2 种基金Liaoning Provincial Science and Technology Program(2023-BS-019,2023-MS-020)National Key R&D Program of China(2021YFB3700401)Key Specialized Research and Development Break-Through-Unveiling and Commanding the Special Project Program in Liaoning Province(2021JH15)。
文摘The impact of casting defects on the weldability of K4951 superalloy was investigated using tungsten inert gas(TIG)welding.The as-cast K4951 superalloy samples with prefabricated U-shaped grooves of varying depths and widths were TIG welded,and the microstructures,cracks morphology,and precipitated phases were analyzed using optical microscope,scanning electron microscope,transmission electron microscope,and energy dispersive X-ray spectrometer.The results reveal that the dimensions of casting defects significantly affect the weldability of K4951.Deep defects(greater than 2 mm)lead to rapid crack propagation,while wider defects can moderate the propagation process of cracks.Elemental segregation and the formation of precipitated phases,such as MC carbides,are observed in the fusion zone,contributing to welding cracks.An optimal groove aspect ratio(depth-to-width)between 0.2 and 0.5 minimizes crack formation tendency and enhances tensile strength,resulting in a mixed brittle-ductile fracture mode of joint after high-temperature tensile testing.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project(2005CB623707)supported by National Basic Research Project of China
文摘The effects of low frequency electromagnetic field on the macro-physical fields in the semi-continuous casting process of aluminum alloys and the microstructure and crack in the billets were studied and analyzed by the numerical and experimental methods.Comparison of the results for the macro-physical fields in the low frequency electromagnetic casting(LFEC) process with the conventional DC casting process indicates the following characters due to the application of electromagnetic field:an entirely changed direction and remarkably increased velocity of melt flow;a uniform distribution and a decreased gradient of temperature;elevated isothermal lines;a reduced sump depth;decreased stress and plastic deformation.Further,the microstructure of the billets is refined remarkably and the crack in the billets is eliminated in LFEC process because of modification of the macro-physical fields induced by the application of low frequency electromagnetic field.
基金sponsored by Tsinghua-Toyota Joint Research Fund
文摘Deep learning has achieved great progress in image recognition,segmentation,semantic recognition and game theory.In this study,a latest deep learning model,a conditional diffusion model was adopted as a surrogate model to predict the heat transfer during the casting process instead of numerical simulation.The conditional diffusion model was established and trained with the geometry shapes,initial temperature fields and temperature fields at t_(i) as the condition and random noise sampled from standard normal distribution as the input.The output was the temperature field at t_(i+1).Therefore,the temperature field at t_(i+1)can be predicted as the temperature field at t_(i) is known,and the continuous temperature fields of all the time steps can be predicted based on the initial temperature field of an arbitrary 2D geometry.A training set with 3022D shapes and their simulated temperature fields at different time steps was established.The accuracy for the temperature field for a single time step reaches 97.7%,and that for continuous time steps reaches 69.1%with the main error actually existing in the sand mold.The effect of geometry shape and initial temperature field on the prediction accuracy was investigated,the former achieves better result than the latter because the former can identify casting,mold and chill by different colors in the input images.The diffusion model has proved the potential as a surrogate model for numerical simulation of the casting process.
文摘Ductile iron represents an optimal solution for saving material and costs in producing large heavy-section castings in the energy sector.It aimed to investigate the influence of very long solidification time(3,10 and 20 h)in different casting zones(casting center and transition zone)on the microstructure and mechanical properties of non-standard heavy-section ferritic ductile iron(EN-GJS-400-15)castings.The different solidification conditions significantly influenced the microstructure(graphite and ferrous matrix).The extent of phenomena such as degenerate graphite,solidification defects,hard carbides,and intergranular pearlitic areas and the microstructural coarsening were proportional to the solidification time and attributable to the combined effect of limited undercooling,solid solution diffusion mechanisms,and segregation phenomena.For comparable solidification time,the transition zone was characterized by larger nodules,comparable nodularity,and lower nodule count than the casting center due to more effective diffusion phenomena during cooling.Moreover,the lower segregation phenomena in the transition zone reduced the amount of pearlite and carbides in the intercellular zones.Hardness was only slightly influenced by the different solidification conditions and did not represent a reliable indicator of the microstructural inhomogeneities.These results are essential to refine casting simulations for producing large ferritic ductile iron castings,considering the wide microstructural variability within non-standard heavy-section castings caused by significantly different solidification conditions.
基金supported in part by the project is supported partly by National Key Research and Development Program of China(no.2022YFB2503504)Chongqing Technology Innovation and Application Development Project(no.CSTB2022TIAD-DEX0011)China Scholarship Council.
文摘This study presents the development of a Magnesium Alloy Seat Frame(MASF),supported by case studies from automotive original equipment manufacturers.The process covers integrated design,simulation,manufacturing,and testing,aiming to boost industry confidence in Mg alloy applications.A novel structural design is developed that integrates the headrest with the backrest,achieving a balance between lightweight performance and safety.Structural optimization is guided by stress–strain simulations under diverse conditions within a complete forward development process.Casting simulations are conducted to analyze process characteristics,resulting in a verified MASF yield rate exceeding 90%.The final 9.88 kg MASF represents a 24.6%(3.23 kg)weight reduction versus a steel seat.This research contributes to advancements in defect control technology for large die casting magnesium alloy parts and has broad implications for their application in automotive manufacturing.
基金supported by the National Natural Science Foundation of China(No.52293395)National Key R&D Program of China(No.2021YFB3702403).
文摘The modified precipitation theory was employed to directly predict the multi-variantε-carbide precipitation from thermodynamics and growing and ripening kinetics.Three distinct variants were identified:Variants 1 and 2 were the perpendicular plate-likeε-carbides,while the granularε-carbides were Variant 3.The particle sizes of Variants 1 and 2 were usually larger than those of Variant 3.The mean aspect ratios of Variants 1 and 2 were 4.96,4.62 and 4.35 larger than those(1.72,1.63 and 1.56)for the granularε-carbides when coiled at 140,200 and 250℃,respectively.Thermodynamic analysis indicated that Variants 1 and 2 are easier to nucleate than Variant 3.The growing kinetic analysis implied that the relative nucleation time and precipitation time for Variants 1 and 2 were about 8 and 5 orders of magnitude less than those for Variant 3,respectively.The ripening kinetics further displayed that the ripening rate was similar for Variants 1,2 and 3.In addition,the dislocation density has weak influence onε-carbide nucleation.These findings suggest that the precipitation thermodynamic and kinetic models could be extended to second phase precipitation in other materials systems.Besides,nano-scaleε-carbides,fine block size and nano-twins,as well as medium-density dislocations,jointly caused the optimal match between strength and total elongation when coiled at 140℃.