Rheocasting with semi-solid slurry has been widely used in industrial processes in recent years.The Cup-Cast method is one of the most effective ways to produce semi-solid slurry for rheocasting.In order to study the ...Rheocasting with semi-solid slurry has been widely used in industrial processes in recent years.The Cup-Cast method is one of the most effective ways to produce semi-solid slurry for rheocasting.In order to study the effect of electromagnetic stirring on the fabrication of semi-solid slurry,we have applied the Double-Axis-Electromagnetic Stirrer(DAEMS)to the Cup-Cast method.Microstructure of the slurry was observed by an optical microscope and Electron Back-Scatter Patterns(EBSP).The results indicated that the electromagnetic stirrer made it possible to accelerate the cooling rate of the melt,thus resulting in a higher quality slurry.展开更多
In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectivel...In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138% more than that of the hypereutectic high Cr one prepared by conventional casting method.展开更多
A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathemat...A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.展开更多
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum ...Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.展开更多
The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, a...The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.展开更多
Pouring position as the input heat source has great infl uence on the temperature fi eld evolution. In this study, the Flow3 D simulation software was applied to investigate the infl uence of pouring methods(with fi x...Pouring position as the input heat source has great infl uence on the temperature fi eld evolution. In this study, the Flow3 D simulation software was applied to investigate the infl uence of pouring methods(with fi xed or moving pouring channel) on AZ91 Mg alloy horizontal centrifugal casting(HCC) process. The simulation results show that the moving pouring channel method can effectively increase the cooling rate and formability of casting pipe. The casting experiment shows that an AZ91 Mg alloy casting pipe with homogeneous microstructure and clear contour was obtained by the moving pouring channel method, and the grain size of the casting pipe is signifi cantly decreased. Meanwhile, serious macro-segregation appeared in the AZ91 casting pipe by the fi xed pouring channel HCC process. Compared with the fi xed pouring channel, the moving pouring channel can remarkably improve the ultimate tensile strength and elongation of the AZ91 HCC pipe from 142.2 MPa to 201.5 MPa and 6.2% to 6.7%, respectively.展开更多
Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to contro...Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.展开更多
This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex me...This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.展开更多
The 3-dimension numerical simulation study on the electromagnetic dam used in the twin roll caster has been performed by using the edge element method. It was found that the materials and structures of the roll collar...The 3-dimension numerical simulation study on the electromagnetic dam used in the twin roll caster has been performed by using the edge element method. It was found that the materials and structures of the roll collars have great influence on the distribution of the magnetic flux density, eddy current density and the electromagnetic force in the molten pool. The conductive collars make the magnetic flux density decreased in the molten pool, but it also makes the magnetic force more uniformly, and the force in the low part of the molten pool where needs greater force have increased some what. The conductive collars make the EMD device more effective than the nonconductive collars.展开更多
The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse he...The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.展开更多
The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment und...The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.展开更多
Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours....Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
基金Item Sponsored by Grant-in-Aid for Young Scientists (B) (No.21760597) from the Japan Society for the Promotion of Science (JSPS)
文摘Rheocasting with semi-solid slurry has been widely used in industrial processes in recent years.The Cup-Cast method is one of the most effective ways to produce semi-solid slurry for rheocasting.In order to study the effect of electromagnetic stirring on the fabrication of semi-solid slurry,we have applied the Double-Axis-Electromagnetic Stirrer(DAEMS)to the Cup-Cast method.Microstructure of the slurry was observed by an optical microscope and Electron Back-Scatter Patterns(EBSP).The results indicated that the electromagnetic stirrer made it possible to accelerate the cooling rate of the melt,thus resulting in a higher quality slurry.
基金This work was supported by the National Natural Science Foundation of China under grant No.50571079.
文摘In this paper, the ring-type ingot of hypereutectic high Cr cast iron was obtained by slope cooling bodycentrifugal casting method (SC-CCM), and its microstructure and impact toughness were investigated, respectively. The results indicated that, first, the primary carbides in the microstructure are prominently finer than those in the hypereutectic high Cr cast iron prepared by conventional casting method. Second, in the ring-type ingot, the primary carbides near radial outer field are finer than those near radial inner field; furthermore, there is dividing field in the microstructure. Finally, the impact toughness values of the specimens impacted on the radial outer face and on the radial inner face are improved respectively about 36% and 138% more than that of the hypereutectic high Cr one prepared by conventional casting method.
文摘A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48A1-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance. The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.
基金the financial support of the 100-Talent Program of Chinese Academy of Sciences
文摘Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.
基金Projects(50435010 50705080 50675187) supported by the National Natural Science Foundation of China
文摘The influence and signification of casting parameters on the solidification process of steel ingot were discussed based on the finite element method (FEM) results by orthogonal experiment method. The range analysis, analysis of variance (ANOVA) and optimization project were used to investigate the FEM results. In order to decrease the ingot riser head and improve the utilization ratio of ingot, the casting parameters involved casting temperature, pouring velocity and interface heat transfer were optimized to decrease shrinkage pore and microporosity. The results show that the heat transfer coefficient between melt and heated board is a more sensitive factor. It is favor to decrease the shrinkage pore and microporosity under the conditions of low temperature, high pouring velocity and high heat transfer between melt and mold. If heat transfer in the ingot body is quicker than that in the riser, the position of shrinkage pore and microporosity will be closer to riser top. The results of optimization project show that few of shrinkage pore and microporosity reach into ingot body with the rational parameters, so the riser size can be reduced.
基金financially supported by the National Natural Foundation of China(Grant No.51605307)Liaoning Provincial Natural Science Foundation(Grant No.201501084)
文摘Pouring position as the input heat source has great infl uence on the temperature fi eld evolution. In this study, the Flow3 D simulation software was applied to investigate the infl uence of pouring methods(with fi xed or moving pouring channel) on AZ91 Mg alloy horizontal centrifugal casting(HCC) process. The simulation results show that the moving pouring channel method can effectively increase the cooling rate and formability of casting pipe. The casting experiment shows that an AZ91 Mg alloy casting pipe with homogeneous microstructure and clear contour was obtained by the moving pouring channel method, and the grain size of the casting pipe is signifi cantly decreased. Meanwhile, serious macro-segregation appeared in the AZ91 casting pipe by the fi xed pouring channel HCC process. Compared with the fi xed pouring channel, the moving pouring channel can remarkably improve the ultimate tensile strength and elongation of the AZ91 HCC pipe from 142.2 MPa to 201.5 MPa and 6.2% to 6.7%, respectively.
文摘Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.
文摘This study adopts the Dantzig’s Simplex method to investigate optimization of sand casting parameters for optimum service performance. Some process variables and mechanical properties were adapted into the Simplex method. Aluminium alloy samples were cast, machined and subjected to a series of mechanical tests. From the body of data collected, linear functions and constraint equations were formulated and employed in the Dantzig’s Simplex method for optimization of process parameters. The results showed that the Simplex method can be adapted for studying performance opti- mization of castings.
基金This study was financially supported by the National Natural Science Foundation of China under the Grant No.59995440 and the Natural Science Foundation of Liaoning Province under the Grant No.2001101021.
文摘The 3-dimension numerical simulation study on the electromagnetic dam used in the twin roll caster has been performed by using the edge element method. It was found that the materials and structures of the roll collars have great influence on the distribution of the magnetic flux density, eddy current density and the electromagnetic force in the molten pool. The conductive collars make the magnetic flux density decreased in the molten pool, but it also makes the magnetic force more uniformly, and the force in the low part of the molten pool where needs greater force have increased some what. The conductive collars make the EMD device more effective than the nonconductive collars.
文摘The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.
文摘The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.
文摘Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.