期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DC-Link Capacitor Optimization in AC–DC Converter by Load Current Prediction
1
作者 V.V.Nijil P.Selvan 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期1043-1062,共20页
Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter... Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature. 展开更多
关键词 DC link capacitor optimization AC–DC converter input ripple reduction aluminum capacitor removal CRP value engineering
在线阅读 下载PDF
A global harmony search algorithm for finding optimal capacitor location and size in distribution networks 被引量:2
2
作者 Reza Sirjani Melkamu Gamene Bade 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1748-1761,共14页
Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highl... Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highly determine the advantage of compensation. A novel global harmony search(GHS) algorithm in parallel with the backward/ forward sweep power flow technique and radial harmonic power flow was used to investigate the optimal placement and sizing of capacitors in radial distribution networks for minimizing power loss and total cost by taking account load unbalancing, mutual coupling and harmonics. The optimal capacitor placement outcomes show that the GHS algorithm can reduce total power losses up to 60 k W and leads to more than 18% of cost saving. The results also demonstrate that the GHS algorithm is more effective in minimization of power loss and total costs compared with genetic algorithm(GA), particle swarm optimization(PSO) and harmony search(HS) algorithm. Moreover, the proposed algorithm converges within 800 iterations and is faster in terms of computational time and gives better performance in finding optimal capacitor location and size compared with other optimization techniques. 展开更多
关键词 optimal capacitor placement HARMONICS unbalancing harmony search algorithm
在线阅读 下载PDF
Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties 被引量:9
3
作者 Sajad Najafi Ravadanegh Mohammad Reza Jannati Oskuee Masoumeh Karimi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1837-1849,共13页
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a... This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration. 展开更多
关键词 optimal reconfiguration renewable energy resources sitting and sizing capacitor allocation electric distribution system uncertainty modeling scenario based-stochastic programming multi-objective genetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部