期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Study on Dry Deposition Processes in Canopy Layer
1
作者 雷孝恩 Julius S.Chang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第4期491-500,共10页
A coupling model between the canopy layer(CL) and atmospheric boundary layer (ABL) for the study of dry deposition velocity is developed. The model consists of six parts: chemical species conservation equation includi... A coupling model between the canopy layer(CL) and atmospheric boundary layer (ABL) for the study of dry deposition velocity is developed. The model consists of six parts: chemical species conservation equation including absorptive factor; the species uptake action including detailed vertical variation of absorptive element in CL; momentum exchange in CL which is represented by a first-order closure momentum equation with an additional larger-scale diffusive term; momentum exchange in ABL which is described by a complete set of the ABL turbulent statistic parameters; absorptivity (or solubility or reflection) at the surface including effects of the physical and chemical characters of the species, land type, seasonal and diurnal variations of the meteorological variables; and deposition velocity derived by distributions of the species with height in CL. Variational rules of the concentration and deposition velocity with both height and time are simulated with the model for both corn and forest canopies. Results predicted with the bulk deposition velocity derived in the paper consist well with experimental data. 展开更多
关键词 Numerical study on Dry Deposition Processes in canopy Layer
在线阅读 下载PDF
Observations and Modeling of Incoming Longwave Radiation to Snow Beneath Forest Canopies in the West Tianshan Mountains, China 被引量:3
2
作者 LU Heng WEI Wen-shou +2 位作者 LIU Ming-zhe HAN Xi HONG Wen 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1138-1153,共16页
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape... Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation. 展开更多
关键词 Incoming longwave radiation Snow beneath forest canopy Simulation model Complex topography Sensitivity study
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部