High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mul...High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm^2, medium planting density of 67,500 plants/hm^2 and high planting density of 90,000 plants/hm^2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield(as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm^2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density(67,500 plants/hm^2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China.展开更多
Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this pa...Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.展开更多
Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological im...Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was 499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and 0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model’s ability in simulating the interception of individual rainfall events were suggested.展开更多
Reducing the threats of sulfate ion(SO42-)deposition to terrestrial ecosystems is a great challenge.The canopy interception effect on SO42-deposition has been well documented,but the interception efficiency of the gap...Reducing the threats of sulfate ion(SO42-)deposition to terrestrial ecosystems is a great challenge.The canopy interception effect on SO42-deposition has been well documented,but the interception efficiency of the gap edge remains unknown.Therefore,a subalpine dragon spruce(Picea asperata)plantation was evaluated in the upper reaches of the Yangtze River.The dynamics of the SO42-concentration in the throughfall were investigated from the gap edge to the closed canopy during the rainfall and snowfall periods from August 2015 to July 2016.The annual input of SO42-totaled 2.56 kg/ha through rainfall and 0.69 kg/ha through snowfall.The total annual net interception fluxes(NIFs)of SO42-at the gap edge and in the closed canopy were 1.48 kg/ha and 0.66 kg/ha,respectively,and the net interception ratios(NIRs)accounted for 45.40%and 20.25%,respectively.The NIF and the NIR of SO42-at the gap edge were higher than those in the closed canopy.Therefore,the results suggested that a significant amount of SO42-deposition was intercepted by the tree canopy in the subalpine plantation,with more SO42-deposition at the gap edge than in the closed canopy,which is beneficial for improving the water quality in the upper reaches of the Yangtze River via forest management.展开更多
Background: Within-canopy interception of photosynthetically active radiation(PAR) impacts yield and other agronomic traits in cotton(Gossypium hirsutum L.). Field experiments were conducted to investigate the influen...Background: Within-canopy interception of photosynthetically active radiation(PAR) impacts yield and other agronomic traits in cotton(Gossypium hirsutum L.). Field experiments were conducted to investigate the influence of 6 cotton varieties(they belong to 3 different plant types) on yield, yield distribution, light interception(LI), LI distribution and the relationship between yield formation and LI in Anyang, Henan, in 2014 and 2015.Result: The results showed that cotton cultivars with long branches(loose-type) intercepted more LI than did cultivars with short branches(compact-type), due to increased LI in the middle and upper canopy. Although loose-type varieties had greater LI, they did not yield significantly higher than compact-type varieties, due to decreased harvest index. Therefore, improving the harvest index by adjusting the source-to-sink relationship may further increase cotton yield for loose-type cotton. In addition, there was a positive relationship between reproductive organ biomass accumulation and canopy-accumulated LI, indicating that enhancing LI is important for yield improvement for each cultivar. Furthermore, yield distribution within the canopy was significantly linearly related to vertical LI distribution.Conclusion: Therefore, optimizing canopy structure of different plant type and subsequently optimizing LI distribution within the cotton canopy can effectively enhance the yield.展开更多
Forest canopy water storage (S), direct throughfall fraction (p) and mean evaporation rate to mean rainfall intensity ratio (E/R) vary between storms and seasonally. Typically, researchers only quantify the mean growi...Forest canopy water storage (S), direct throughfall fraction (p) and mean evaporation rate to mean rainfall intensity ratio (E/R) vary between storms and seasonally. Typically, researchers only quantify the mean growing and dormant season values of S, p and E/R for deciduous forests, thereby ignoring seasonal changes S, p and E/R .Past researchers adapted the mean method, which is usually used to estimate S, p and E/R on an annual or seasonal basis, to estimate the same canopy variables on a per storm basis (individual storm (IS) method). The disadvantage of the IS method is that it requires more expensive equipment and the calculation of the canopy variables is more labor intensive relative to the mean method. The goal of this study was to explore the use of the IS method for northern hardwood forests and to determine whether estimates of S, p and E/R derived by the IS method produce more accurate estimates of rainfall interception loss (In) using the Gash model relative to estimates derived by the mean method. The IS method estimated that S increased from approximately 0.11 mm in the early spring to 1.2 mm in the summer and then declined to 0.24 mm after fall senescence. Direct throughfall decreased from 0.4 in the early spring to 0.11 in the summer, and then increased to 0.4 after leaf senescence. When measurement period estimates of p, S and E/R derived by the IS and mean methods were applied to the Gash model, the modeled estimates of In differed from the measured values by 14.0 mm and 1.3 mm, respectively. Therefore, because the mean method provided more accurate estimates of In, the extra effort and expense required by the IS method is not advantageous for studies in northern hardwood forests that only need to model annual or seasonal estimates of In.展开更多
The purpose of this study was to ascertain the effectiveness of surface treatments to quantify the partitioning of rainwater falling on the runoff strips and basins as well as to determine the fraction of rainwater av...The purpose of this study was to ascertain the effectiveness of surface treatments to quantify the partitioning of rainwater falling on the runoff strips and basins as well as to determine the fraction of rainwater available to intercept by maize canopy and infiltrate into the root zone. The rainfall canopy interception (RCI) was estimated as a function of basin leaf area ratio per rain event. The runoffrainfall (RR) ratio was determined for both a single rainfall event and the whole growing season. Infiltration ratio of basin to runoff area was analysed for every unit millimeter of water that infiltrate in the runoff section, some additional of water will infiltrate in the basin area. The plateau value of RCI-rainfall relationships rendered about double in the wider (1.0-1.1 mm) compared to the narrow runoff strips (0.5-0.6 mm). Statistically, the combined surface treatments (RSL x ML) affected the RR ratio with higher efficiency in bare 1 m runoff (27%) and the lower efficiency group (〈 10%) is associated with the widest runoff length covered with mulch. Variations in fractions of rainwater that can infiltrate into basins and runoffareas can lead one to select alternative strategies for water harvesting techniques.展开更多
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor...Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.展开更多
To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D lea...To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.展开更多
A rainfall interception methodology was implemented in a deciduous Ficus benjamina (L.) tree to evaluate the interception loss, as well as the dynamics on canopy storage capacity (S) and free through fall (ρ). Measur...A rainfall interception methodology was implemented in a deciduous Ficus benjamina (L.) tree to evaluate the interception loss, as well as the dynamics on canopy storage capacity (S) and free through fall (ρ). Measurements of gross precipitation (Pg), through fall and meteorological data were recorded every 5 minutes. Nineteen individual storms from summer to autumn 2005, and twenty one in spring to autumn, 2006 were analyzed. For the studied period, 151.59 mm and 203.35 mm of rainfall occurred on 2005 and 2006 respectively. Canopy interception was 59.46% and 70.98% of Pg for the first and second year. Throughfall data recorded during 2005 were ?38.14% (of Pg) and 27.21% (of Pg) for 2006. The throughfall and gross precipitation relationship yielded S = 1.50 mm for the 2005 data. In 2006 storms were analyzed in detail, where ρ and S varied in a range from 0.10 to 0.64 and from 1.00 to 2.03 mm, respectively. Moreover, application of the Rutter and Gash models with two years of rainfall data (2005-2006) from the study area indicated an underestimation and overestimation of 69% and 88%, respectively. The slightly best prediction of the interception loss was obtained with the Gash model. Yet S and ρ change significantly due to wind speed, temperature, rainfall intensity and seasonal vegetation development.展开更多
Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping...Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的...雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。展开更多
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro...The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.展开更多
Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in hor...Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.展开更多
This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The...This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.展开更多
[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the cha...[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks.展开更多
Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,a...Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,ash dieback),infestations of insect pests,and human-accelerated climate change can create canopy gaps due to systematic decline in,or loss of,tree species that was once an important part of the canopy.Resultant cascade effects have the potential to alter the composition of woodland ecosystems quickly and radically,but inherent lag times make primary research into these effects challenging.Here,we explore change in woodland vegetation at 10 sites in response to canopy opening using the Elm Decline,a rapid loss of Ulmus in woodlands across northwestern Europe~5800 years ago that coexisted alongside other stressors such as increasing human activity,as a palaeoecological analogue.For arboreal taxa,community evenness significantly decreased,within-site turnover significantly increased,and richness remained unchanged.Changes in arboreal taxa were highly site-specific but there was a substantial decline in woody climbing taxa,especially Hedera(ivy),across the majority of sites.For shrub taxa,richness significantly increased but evenness and turnover remained consistent.Interestingly,however,there was a significant increase in abundance of shrubs at 70%of sites,including Calluna(heather),Ilex(holly)and Corylus(hazel),suggesting structural change.Surprisingly,there was no change in richness,evenness or turnover for herb taxa,possibly because change was highly variable spatially.However,there was a marked uptick in the disturbance indicator Plantago(plantain).Overall,these findings suggest that woodlands with sustained reduction in,or loss of,a tree species that once formed an important part of the canopy has profound,but often spatially idiosyncratic,impacts on vegetation diversity(richness),composition(evenness),stability(turnover),and on abundance of specific taxa,especially within the shrub layer.Use of this palaeoecological analogue,which was itself complicated by cooccurring changes in human activity,provides a valuable empirical insight into possible cascade effects of similar change in canopy opening in contemporary settings,including Ash Dieback.展开更多
Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to de...Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to determine whether the canopy landscape affects human emotions;(2)to clarify the influence of canopy landscape on individual emotional indicators;and(3)to identify the ratio of canopy landscape elements with the most beneficial effects on human emotions.Different canopy landscape images were generated,and the self-reported emotions and neural activity of the subjects assessed before and after they viewed the images.The results of the statistical analysis were intuitively displayed by a ternary phase diagram.We found that the canopy landscape affected human emotions and different proportions of canopy landscape elements led to significant differences in excitement,depression and confusion.Higher proportions of blue elements and lower proportions of green and other elements characterized the canopy landscape with the most beneficial effect on human emotions.These findings will promote further research on canopy landscapes,inform the planning and design of urban forests,and contribute to the field of landscape architecture.展开更多
基金supported by the National Natural Science Foundation of China(51509208)the National Key Research and Development Program of China(2016YFC0400201)the Scientific Startup Foundation for Doctors of Northwest A&F University(Z109021613)
文摘High and efficient use of limited rainwater resources is of crucial importance for the crop production in arid and semi-arid areas. To investigate the effects of different soil and crop management practices(i.e., mulching mode treatments: flat cultivation with non-mulching, flat cultivation with straw mulching, plastic-covered ridge with bare furrow and plastic-covered ridge with straw-covered furrow; and planting density treatments: low planting density of 45,000 plants/hm^2, medium planting density of 67,500 plants/hm^2 and high planting density of 90,000 plants/hm^2) on rainfall partitioning by dryland maize canopy, especially the resulted net rainfall input beneath the maize canopy, we measured the gross rainfall, throughfall and stemflow at different growth stages of dryland maize in 2015 and 2016 on the Loess Plateau of China. The canopy interception loss was estimated by the water balance method. Soil water storage, leaf area index, grain yield(as well as it components) and water use efficiency of dryland maize were measured or calculated. Results showed that the cumulative throughfall, cumulative stemflow and cumulative canopy interception loss during the whole growing season accounted for 42.3%–77.5%, 15.1%–36.3% and 7.4%–21.4% of the total gross rainfall under different treatments, respectively. Soil mulching could promote the growth and development of dryland maize and enhance the capability of stemflow production and canopy interception loss, thereby increasing the relative stemflow and relative canopy interception loss and reducing the relative throughfall. The relative stemflow and relative canopy interception loss generally increased with increasing planting density, while the relative throughfall decreased with increasing planting density. During the two experimental years, mulching mode had no significant influence on net rainfall due to the compensation between throughfall and stemflow, whereas planting density significantly affected net rainfall. The highest grain yield and water use efficiency of dryland maize were obtained under the combination of medium planting density of 67,500 plants/hm^2 and mulching mode of plastic-covered ridge with straw-covered furrow. Soil mulching can reduce soil evaporation and retain more soil water for dryland maize without reducing the net rainfall input beneath the maize canopy, which may alleviate the contradiction between high soil water consumption and insufficient rainfall input of the soil. In conclusion, the application of medium planting density(67,500 plants/hm^2) under plastic-covered ridge with bare furrow is recommended for increasing dryland maize production on the Loess Plateau of China.
文摘Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.
基金supported by the National Key Research and Development Program of China(2016YFC0501603)the National Natural Science Foundation of China(Nos.41671025+2 种基金413904614123085241471029)
文摘Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was 499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and 0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model’s ability in simulating the interception of individual rainfall events were suggested.
基金funded by the National Key R&D Program of China (Grant No. 2017YFC0503906)the Nation Nature Science Foundation of China (Grant Nos. 31570445, 31622018, 31670526 and 31901295)the Sichuan Province and Technology Project for Youth Innovation Team (Grant No. 2017TD0022)
文摘Reducing the threats of sulfate ion(SO42-)deposition to terrestrial ecosystems is a great challenge.The canopy interception effect on SO42-deposition has been well documented,but the interception efficiency of the gap edge remains unknown.Therefore,a subalpine dragon spruce(Picea asperata)plantation was evaluated in the upper reaches of the Yangtze River.The dynamics of the SO42-concentration in the throughfall were investigated from the gap edge to the closed canopy during the rainfall and snowfall periods from August 2015 to July 2016.The annual input of SO42-totaled 2.56 kg/ha through rainfall and 0.69 kg/ha through snowfall.The total annual net interception fluxes(NIFs)of SO42-at the gap edge and in the closed canopy were 1.48 kg/ha and 0.66 kg/ha,respectively,and the net interception ratios(NIRs)accounted for 45.40%and 20.25%,respectively.The NIF and the NIR of SO42-at the gap edge were higher than those in the closed canopy.Therefore,the results suggested that a significant amount of SO42-deposition was intercepted by the tree canopy in the subalpine plantation,with more SO42-deposition at the gap edge than in the closed canopy,which is beneficial for improving the water quality in the upper reaches of the Yangtze River via forest management.
基金funded by the National Natural Science Foundation of China(31371561)
文摘Background: Within-canopy interception of photosynthetically active radiation(PAR) impacts yield and other agronomic traits in cotton(Gossypium hirsutum L.). Field experiments were conducted to investigate the influence of 6 cotton varieties(they belong to 3 different plant types) on yield, yield distribution, light interception(LI), LI distribution and the relationship between yield formation and LI in Anyang, Henan, in 2014 and 2015.Result: The results showed that cotton cultivars with long branches(loose-type) intercepted more LI than did cultivars with short branches(compact-type), due to increased LI in the middle and upper canopy. Although loose-type varieties had greater LI, they did not yield significantly higher than compact-type varieties, due to decreased harvest index. Therefore, improving the harvest index by adjusting the source-to-sink relationship may further increase cotton yield for loose-type cotton. In addition, there was a positive relationship between reproductive organ biomass accumulation and canopy-accumulated LI, indicating that enhancing LI is important for yield improvement for each cultivar. Furthermore, yield distribution within the canopy was significantly linearly related to vertical LI distribution.Conclusion: Therefore, optimizing canopy structure of different plant type and subsequently optimizing LI distribution within the cotton canopy can effectively enhance the yield.
文摘Forest canopy water storage (S), direct throughfall fraction (p) and mean evaporation rate to mean rainfall intensity ratio (E/R) vary between storms and seasonally. Typically, researchers only quantify the mean growing and dormant season values of S, p and E/R for deciduous forests, thereby ignoring seasonal changes S, p and E/R .Past researchers adapted the mean method, which is usually used to estimate S, p and E/R on an annual or seasonal basis, to estimate the same canopy variables on a per storm basis (individual storm (IS) method). The disadvantage of the IS method is that it requires more expensive equipment and the calculation of the canopy variables is more labor intensive relative to the mean method. The goal of this study was to explore the use of the IS method for northern hardwood forests and to determine whether estimates of S, p and E/R derived by the IS method produce more accurate estimates of rainfall interception loss (In) using the Gash model relative to estimates derived by the mean method. The IS method estimated that S increased from approximately 0.11 mm in the early spring to 1.2 mm in the summer and then declined to 0.24 mm after fall senescence. Direct throughfall decreased from 0.4 in the early spring to 0.11 in the summer, and then increased to 0.4 after leaf senescence. When measurement period estimates of p, S and E/R derived by the IS and mean methods were applied to the Gash model, the modeled estimates of In differed from the measured values by 14.0 mm and 1.3 mm, respectively. Therefore, because the mean method provided more accurate estimates of In, the extra effort and expense required by the IS method is not advantageous for studies in northern hardwood forests that only need to model annual or seasonal estimates of In.
文摘The purpose of this study was to ascertain the effectiveness of surface treatments to quantify the partitioning of rainwater falling on the runoff strips and basins as well as to determine the fraction of rainwater available to intercept by maize canopy and infiltrate into the root zone. The rainfall canopy interception (RCI) was estimated as a function of basin leaf area ratio per rain event. The runoffrainfall (RR) ratio was determined for both a single rainfall event and the whole growing season. Infiltration ratio of basin to runoff area was analysed for every unit millimeter of water that infiltrate in the runoff section, some additional of water will infiltrate in the basin area. The plateau value of RCI-rainfall relationships rendered about double in the wider (1.0-1.1 mm) compared to the narrow runoff strips (0.5-0.6 mm). Statistically, the combined surface treatments (RSL x ML) affected the RR ratio with higher efficiency in bare 1 m runoff (27%) and the lower efficiency group (〈 10%) is associated with the widest runoff length covered with mulch. Variations in fractions of rainwater that can infiltrate into basins and runoffareas can lead one to select alternative strategies for water harvesting techniques.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0403305)National Natural Science Foundation of China(32101845)+1 种基金the National Key Research and Development Program of China(2023YFE0105000)the China Agriculture Research System(CARS-04).
文摘Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.
文摘To address the problem of multi-missile cooperative interception against maneuvering targets at a prespecified impact time and desired Line-of-Sight(LOS)angles in ThreeDimensional(3D)space,this paper proposes a 3D leader-following cooperative interception guidance law.First,in the LOS direction of the leader,an impact time-controlled guidance law is derived based on the fixed-time stability theory,which enables the leader to complete the interception task at a prespecified impact time.Next,in the LOS direction of the followers,by introducing a time consensus tracking error function,a fixed-time consensus tracking guidance law is investigated to guarantee the consensus tracking convergence of the time-to-go.Then,in the direction normal to the LOS,by combining the designed global integral sliding mode surface and the second-order Sliding Mode Control(SMC)theory,an innovative 3D LOS-angle-constrained interception guidance law is developed,which eliminates the reaching phase in the traditional sliding mode guidance laws and effectively saves energy consumption.Moreover,it effectively suppresses the chattering phenomenon while avoiding the singularity issue,and compensates for unknown interference caused by target maneuvering online,making it convenient for practical engineering applications.Finally,theoretical proof analysis and multiple sets of numerical simulation results verify the effectiveness,superiority,and robustness of the investigated guidance law.
基金financially supported by the Consejo Nacional de Ciencia y Tecnologia(CONACYT).
文摘A rainfall interception methodology was implemented in a deciduous Ficus benjamina (L.) tree to evaluate the interception loss, as well as the dynamics on canopy storage capacity (S) and free through fall (ρ). Measurements of gross precipitation (Pg), through fall and meteorological data were recorded every 5 minutes. Nineteen individual storms from summer to autumn 2005, and twenty one in spring to autumn, 2006 were analyzed. For the studied period, 151.59 mm and 203.35 mm of rainfall occurred on 2005 and 2006 respectively. Canopy interception was 59.46% and 70.98% of Pg for the first and second year. Throughfall data recorded during 2005 were ?38.14% (of Pg) and 27.21% (of Pg) for 2006. The throughfall and gross precipitation relationship yielded S = 1.50 mm for the 2005 data. In 2006 storms were analyzed in detail, where ρ and S varied in a range from 0.10 to 0.64 and from 1.00 to 2.03 mm, respectively. Moreover, application of the Rutter and Gash models with two years of rainfall data (2005-2006) from the study area indicated an underestimation and overestimation of 69% and 88%, respectively. The slightly best prediction of the interception loss was obtained with the Gash model. Yet S and ρ change significantly due to wind speed, temperature, rainfall intensity and seasonal vegetation development.
基金supported by the National Natural Science Foundation of China(32101857 and U21A20218)the China Agricultural University Corresponding Support Research Joint Fund(GSAU-DKZY-2024-001)+1 种基金the Science and Technology Program in Gansu Province,China(24ZDNA008and23JRRA1407)the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx-03Y10).
文摘Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
文摘雷达信号分选是电子战系统中的关键技术,是战场态势感知的重要环节,新体制雷达技术的快速发展给复杂电磁环境下信号分选带来了严峻挑战。针对传统K-means聚类算法在对雷达全脉冲数据进行信号分选时存在对聚类数K和初始点选择较为敏感的问题,提出了一种基于优化K-means的雷达信号分选算法。通过将水波中心扩散(water wave center diffusion,WWCD)优化算法和Canopy算法相结合,实现了Canopy算法距离阈值的优选,并为后续K-means聚类优化了K值的选择,有效降低了K-means算法对初始聚类数选择的敏感性。实验中,主要通过3个UCI公开数据集和3类频率跳变雷达脉冲数据进行聚类分选效果验证,并与常见的DBSCAN、OPTICS、Canopy-K-means等聚类算法进行了聚类效果对比。结果表明,所提方法有较高的聚类分选准确率,且对初始参数的设置不敏感。
基金supported by the National Natural Science Foundation of China(32172118)the National Key Research and Development Program of China(2016YFD0300110 and 2016YFD0300101)+1 种基金the Basic Scientific Research Fund of Chinese Academy of Agricultural Sciences,China(S2022ZD05)the Agricultural Science and Technology Innovation Program,China(CAAS-ZDRW202004)。
文摘The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.
基金supported by the National Key Research and Development Plan Project Sub-Topic of China(Grant Nos.2022YFD1901500 and 2022YFD1901505-07)the National Natural Science Foundation of China(Grant No.32260531)+1 种基金the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China(Grant No.Qiankehezhongyindi[2023]8)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China(Grant No.Qianjiaoji[2023]007).
文摘Recently,information acquired at the canopy top,such as spectral and textural data,has been widely used to estimate plant nitrogen(N)accumulation(PNA).The response of crops to N uptake involves not only changes in horizontal canopy top information but also an increase in vertical plant height(PH).It remains unclear whether the fusion of spectral indices with PH can improve the estimation performance of PNA models based on spectral remote sensing across different growth stages.
基金supported by the National Natural Science Foundation of China(62303350).
文摘This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.
文摘[Objective]Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production.This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature.[Methods]A dynamic prediction model for crop canopy temperature was developed based on Long Short-Term Memory(LSTM),Variational Mode Decomposition(VMD),and the Rime Ice Morphology-based Optimization Algorithm(RIME)optimization algorithm,named RIME-VMD-RIME-LSTM(RIME2-VMDLSTM).Firstly,crop canopy temperature data were collected by an inspection robot suspended on a cableway.Secondly,through the performance of multiple pre-test experiments,VMD-LSTM was selected as the base model.To reduce crossinterference between different frequency components of VMD,the K-means clustering algorithm was applied to cluster the sample entropy of each component,reconstructing them into new components.Finally,the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM,enhancing the model's prediction accuracy.[Results and Discussions]The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)(0.3601 and 0.2543°C,respectively)in modeling different noise environments than the comparator model.Furthermore,the R2 value reached a maximum of 0.9947.[Conclusions]This model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks.
文摘Temperate woodland vegetation is initially determined by spatiotemporal and historical factors,mediated by complex biotic interactions.However,catastrophic events such as disease outbreaks(e.g.,sweet chestnut blight,ash dieback),infestations of insect pests,and human-accelerated climate change can create canopy gaps due to systematic decline in,or loss of,tree species that was once an important part of the canopy.Resultant cascade effects have the potential to alter the composition of woodland ecosystems quickly and radically,but inherent lag times make primary research into these effects challenging.Here,we explore change in woodland vegetation at 10 sites in response to canopy opening using the Elm Decline,a rapid loss of Ulmus in woodlands across northwestern Europe~5800 years ago that coexisted alongside other stressors such as increasing human activity,as a palaeoecological analogue.For arboreal taxa,community evenness significantly decreased,within-site turnover significantly increased,and richness remained unchanged.Changes in arboreal taxa were highly site-specific but there was a substantial decline in woody climbing taxa,especially Hedera(ivy),across the majority of sites.For shrub taxa,richness significantly increased but evenness and turnover remained consistent.Interestingly,however,there was a significant increase in abundance of shrubs at 70%of sites,including Calluna(heather),Ilex(holly)and Corylus(hazel),suggesting structural change.Surprisingly,there was no change in richness,evenness or turnover for herb taxa,possibly because change was highly variable spatially.However,there was a marked uptick in the disturbance indicator Plantago(plantain).Overall,these findings suggest that woodlands with sustained reduction in,or loss of,a tree species that once formed an important part of the canopy has profound,but often spatially idiosyncratic,impacts on vegetation diversity(richness),composition(evenness),stability(turnover),and on abundance of specific taxa,especially within the shrub layer.Use of this palaeoecological analogue,which was itself complicated by cooccurring changes in human activity,provides a valuable empirical insight into possible cascade effects of similar change in canopy opening in contemporary settings,including Ash Dieback.
基金co-funded by the Talent Initiation Program of the Scientific Research Development Fund of Zhejiang A&F University(2021LFR041and 2022LFR040)the National Natural Science Foundation of China(52278084).
文摘Tree canopy landscapes are an important component of urban forests and have the potential to influence human emotions.However,their influence on emotional responses remains unclear.The aims of this study were:(1)to determine whether the canopy landscape affects human emotions;(2)to clarify the influence of canopy landscape on individual emotional indicators;and(3)to identify the ratio of canopy landscape elements with the most beneficial effects on human emotions.Different canopy landscape images were generated,and the self-reported emotions and neural activity of the subjects assessed before and after they viewed the images.The results of the statistical analysis were intuitively displayed by a ternary phase diagram.We found that the canopy landscape affected human emotions and different proportions of canopy landscape elements led to significant differences in excitement,depression and confusion.Higher proportions of blue elements and lower proportions of green and other elements characterized the canopy landscape with the most beneficial effect on human emotions.These findings will promote further research on canopy landscapes,inform the planning and design of urban forests,and contribute to the field of landscape architecture.