期刊文献+
共找到284,504篇文章
< 1 2 250 >
每页显示 20 50 100
An application to detect the edge and texture of the flower by canny algorithm 被引量:1
1
作者 ZHANG Li-hong ZHANG Yan-hua 《通讯和计算机(中英文版)》 2009年第10期81-83,共3页
关键词 canny算法 纹理特征 边缘检测 图像噪音
在线阅读 下载PDF
An Application of Canny Edge Detection Algorithm to Rail Thermal Image Fault Detection
2
作者 Libo Cai Yu Ma +2 位作者 Tangming Yuan Haifeng Wang Tianhua Xu 《Journal of Computer and Communications》 2015年第11期19-24,共6页
The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equali... The paper discusses an application for rail track thermal image fault detection. In order to get better results from the Canny edge detection algorithm, the image needs to be processed in advance. The histogram equalization method is proposed to enhance the contrast of the image. Since a thermal image contains multiple parallel rail tracks, an algorithm has been developed to locate and separate the tracks that we are interested in. This is accomplished by applying the least squares linear fitting technique to represent the surface of a track. The performance of the application is evaluated by using a number of images provided by a specialised company and the results are essentially favourable. 展开更多
关键词 FAULT DETECTION RAIL Thermal Image canny Edge DETECTION Linear Least SQUARES
暂未订购
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
4
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
5
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
6
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
7
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
Optimized Deployment Method for Finite Access Points Based on Virtual Force Fusion Bat Algorithm
8
作者 Jian Li Qing Zhang +2 位作者 Tong Yang Yu’an Chen Yongzhong Zhan 《Computer Modeling in Engineering & Sciences》 2025年第9期3029-3051,共23页
In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployme... In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployment method of multi-objective optimization with virtual force fusion bat algorithm(VFBA)using the classical four-node regular distribution as an entry point.The introduction of Lévy flight strategy for bat position updating helps to maintain the population diversity,reduce the premature maturity problem caused by population convergence,avoid the over aggregation of individuals in the local optimal region,and enhance the superiority in global search;the virtual force algorithm simulates the attraction and repulsion between individuals,which enables individual bats to precisely locate the optimal solution within the search space.At the same time,the fusion effect of virtual force prompts the bat individuals to move faster to the potential optimal solution.To validate the effectiveness of the fusion algorithm,the benchmark test function is selected for simulation testing.Finally,the simulation result verifies that the VFBA achieves superior coverage and effectively reduces node redundancy compared to the other three regular layout methods.The VFBA also shows better coverage results when compared to other optimization algorithms. 展开更多
关键词 Multi-objective optimization deployment virtual force algorithm bat algorithm fusion algorithm
在线阅读 下载PDF
一种新的基于Canny算子数字图像边缘检测算法 被引量:2
9
作者 关雪梅 田国刚 《安阳师范学院学报》 2025年第2期11-16,共6页
提出并研究了一种基于Canny算子的改进数字图像边缘检测算法,在Canny算子基础上,引入了自适应高斯滤波及多尺度边缘响应融合策略,以提高边缘检测的鲁棒性和精度。不同噪声水平下的图像实验验证结果表明,改进后的算法在边缘定位精度、抗... 提出并研究了一种基于Canny算子的改进数字图像边缘检测算法,在Canny算子基础上,引入了自适应高斯滤波及多尺度边缘响应融合策略,以提高边缘检测的鲁棒性和精度。不同噪声水平下的图像实验验证结果表明,改进后的算法在边缘定位精度、抗噪性能以及计算效率方面均优于传统Canny算子,能够更加准确地提取图像中的重要边缘信息。研究为数字图像处理中的边缘检测问题提供了新思路。 展开更多
关键词 图像处理 canny算子 边缘检测
在线阅读 下载PDF
基于改进Canny算法的航天电子装联焊点缺陷检测方法 被引量:1
10
作者 杨志 赵亚飞 +2 位作者 王薇 杨瑞栋 吴彦威 《计算机测量与控制》 2025年第9期261-270,共10页
航天电子装联中焊点的质量对设备的可靠性至关重要,焊接缺陷的检测是确保系统稳定运行的关键;为提升航天电子装联过程中焊接缺陷检测的效率和准确性,研究提出了一种基于改进Canny算法的图像处理方法;研究采用双边滤波技术在平滑噪声的... 航天电子装联中焊点的质量对设备的可靠性至关重要,焊接缺陷的检测是确保系统稳定运行的关键;为提升航天电子装联过程中焊接缺陷检测的效率和准确性,研究提出了一种基于改进Canny算法的图像处理方法;研究采用双边滤波技术在平滑噪声的同时保留边缘信息,结合Otsu阈值分割算法来自动确定最佳阈值;通过设置双阈值来确定强边缘和弱边缘,引入Hough变换填补断裂的边缘;实验结果表明,基于改进Canny的系统在各类焊点检测中表现出色,在0.12 mm网板中,正常焊点和桥接焊点的检测准确率分别为98.89%和98.21%;在0.18 mm网板中,该系统在少焊和过焊焊点的检测准确率分别为97.56%和98.47%;同时,验证了改进Canny算法在准确率、漏检率和运行时间方面的差异均具有统计学意义;此外,改进Canny系统在计算时间和CPU使用率上优于其他两种算法,表现出该系统在实际应用中的优越性。 展开更多
关键词 机器视觉 边缘检测 canny 图像预处理 航天电子装联
在线阅读 下载PDF
基于高低阈值Canny算子的遥感影像特征边缘检测 被引量:1
11
作者 曾菲 《电子设计工程》 2025年第10期167-170,175,共5页
遥感影像中地物边缘具有不同的对比度和强度,增加了边缘检测的难度。为有效检测影像特征边缘,提出基于高低阈值Canny算子的遥感影像特征边缘检测方法。在对遥感影像进行去噪与增强处理后,依据像素点的梯度方向,将非极大值的像素点梯度... 遥感影像中地物边缘具有不同的对比度和强度,增加了边缘检测的难度。为有效检测影像特征边缘,提出基于高低阈值Canny算子的遥感影像特征边缘检测方法。在对遥感影像进行去噪与增强处理后,依据像素点的梯度方向,将非极大值的像素点梯度幅值设置为零,将大于高阈值的像素点作为强特征点,将介于高低阈值之间的像素点作为弱特征点,将小于低阈值的像素点作为非边缘点。通过遍历全部的边缘特征点,将分裂点周边的弱特征点转化为强特征点,删除孤立边缘特征点,再连接所有强特征点,完成对特征边缘的检测。实验显示,该方法的特征边缘检测结果与实际特征边缘基本一致,边缘特征点检测完整度可达到97%,说明该方法能够完整、精准地检测影像特征边缘。 展开更多
关键词 遥感影像 特征边缘检测 高低阈值canny算子 边缘特征提取 边缘细化
在线阅读 下载PDF
基于改进Canny 算子的岩石裂隙识别算法
12
作者 杨东辉 苏经纬 乔伟 《地下空间与工程学报》 北大核心 2025年第S2期581-588,共8页
边缘检测是岩石裂隙图像识别领域的一个重要方向。针对经典Canny算法在边缘检测精度方面的不足,提出一种基于改进Canny算子的岩石裂隙识别算法,采用双边滤波代替原始高斯滤波对图像进行平滑去噪;采用4方向的3×3 Sobel算子代替原始2... 边缘检测是岩石裂隙图像识别领域的一个重要方向。针对经典Canny算法在边缘检测精度方面的不足,提出一种基于改进Canny算子的岩石裂隙识别算法,采用双边滤波代替原始高斯滤波对图像进行平滑去噪;采用4方向的3×3 Sobel算子代替原始2×2模板计算图像梯度;采用Otsu算法自适应确认Canny高低阈值。选取单一型、偏Y型与T型岩石裂隙图像进行仿真实验,从边缘像素统计与算法执行效率两个方面对其进行评价。结果表明:与经典Canny算法、Sobel算子相比,改进Canny算法C/A值分别降低80.9%~90.3%、54.4%~76.7%,C/B值分别降低67.3%~82.6%、43.7%~76.0%;改进Canny算法边缘点连接程度好,伪边缘抑制性强,在边缘检测精度与整体功能性方面均取得了较大进步,但执行效率有待进一步提高。改进Canny算法为岩石裂隙识别方面的研究提供了新思路。 展开更多
关键词 边缘检测 岩石裂隙识别 改进canny算子 OTSU算法 双边滤波
原文传递
基于Canny-Hough的灌溉渠道边界快速检测算法研究
13
作者 陆红飞 毛涵宇 +3 位作者 周豪 甄博 仲瑶 杨泊 《灌溉排水学报》 2025年第5期47-56,共10页
【目的】构建一种灌溉渠道边界快速检测算法。【方法】针对灌溉渠道边界的识别与检测问题,采用无人机采集句容东山河和盐城伍佑港的渠道影像,结合Canny边缘检测和Hough变换技术提取渠道边界线,提出了一种基于参照直线和垂直距离的边界... 【目的】构建一种灌溉渠道边界快速检测算法。【方法】针对灌溉渠道边界的识别与检测问题,采用无人机采集句容东山河和盐城伍佑港的渠道影像,结合Canny边缘检测和Hough变换技术提取渠道边界线,提出了一种基于参照直线和垂直距离的边界归类方法,并分别采用线性拟合和二次多项式拟合方法,评估了边界线的拟合精度。【结果】相比原始图片,采用800×400尺寸图片进行边界提取效果最好,检测时间低于1.3 s,且基本能够描绘渠道边界走势;二次多项式拟合效果优于线性拟合,句容河右侧边界拟合时,二次多项式拟合和线性拟合决定系数(R^(2))分别为0.9592、0.9492;尤其是在处理因障碍物而形成的边界噪点时,能够更准确地描绘边界走势。此外,基于参照直线和垂直距离的边界归类方法,能够高效准确地获取渠道边界,二次曲线拟合时R^(2)均超过0.99。【结论】在传统Canny检测和Hough变换基础上,基于参照直线和垂直距离的分组方法能够实现多条边界快速检测,本研究进一步推动了机器视觉算法在灌溉工程管理中的应用。 展开更多
关键词 canny HOUGH 灌溉渠道 边界检测 无人机
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于改进Canny的水稻倒伏区域提取方法
15
作者 柴俊 王浩陈 《现代信息科技》 2025年第2期12-15,共4页
为衡量农作物受灾后倒伏带来的产量与经济损失,利用改进的图像边缘检测技术来获取倒伏区域面积。在现有Canny算子边缘检测的基础上,采用中值滤波替代高斯函数来平滑处理图像。再采用自适应双阈值和广义链区分真伪边缘点、消除伪边缘点,... 为衡量农作物受灾后倒伏带来的产量与经济损失,利用改进的图像边缘检测技术来获取倒伏区域面积。在现有Canny算子边缘检测的基础上,采用中值滤波替代高斯函数来平滑处理图像。再采用自适应双阈值和广义链区分真伪边缘点、消除伪边缘点,最后通过线性拟合和霍夫变换获得边缘直线。由于倒伏区域和正常区域存在明显的分界现象和倒伏纹理增多的特征可准确提取倒伏区域。试验结果表明,五个实验地块倒伏面积提取误差只有9.2%,9.4%,8.9%,7.9%和8.7%。 展开更多
关键词 倒伏作物 图像识别 边缘检测 改进canny
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
16
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
考虑灰度转换和Canny边缘检测算子的胎儿头围自动测量研究
17
作者 沈超 彭琢创 《国外电子测量技术》 2025年第6期168-173,共6页
胎儿头围的准确测量对于产前评估和生长发育监测具有重要意义,然而传统方法在处理超声图像时常受到边界模糊和组织复杂度高的干扰。提出一种融合图像预处理与改进分割模型的自动测量方法,通过灰度转换强化图像对比度,结合Canny边缘检测... 胎儿头围的准确测量对于产前评估和生长发育监测具有重要意义,然而传统方法在处理超声图像时常受到边界模糊和组织复杂度高的干扰。提出一种融合图像预处理与改进分割模型的自动测量方法,通过灰度转换强化图像对比度,结合Canny边缘检测算子提取清晰边界,提升目标区域显著性。在此基础上构建引入注意力机制的编码解码式网络结构,利用多尺度特征融合与跳跃连接优化分割精度,并在跳跃路径中嵌入注意力模块,增强对目标区域的关注能力。实验采用真实临床数据集进行评估,与传统模型和基础分割网络相比,该模型在准确率、重叠指标和边界表达上表现更优,准确率达到0.956,IoU值为0.865,平均测量误差率下降至9.6%,轮廓闭合度提高至0.89。消融测试结果显示,预处理与注意力机制的组合对性能提升具有协同作用。结果表明,该模型在保持效率的同时,显著提升了测量精度与边界连续性,具备良好的临床应用潜力。 展开更多
关键词 灰度转换 canny边缘检测算子 自动测量 注意力机制
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
18
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
改进Canny算子在零件尺寸测量中的应用 被引量:3
19
作者 张晓阳 何军红 +1 位作者 牛云 张御 《机械科学与技术》 北大核心 2025年第4期625-631,共7页
零件尺寸视觉测量目前多采用像素级的边缘检测算法,不能满足高精度的测量需求。为提高零件尺寸测量精度,提出一种基于改进Canny算子的亚像素级零件尺寸测量方法。首先采用自适应中值-高斯滤波对零件图像进行滤波处理,在保留较多边缘信... 零件尺寸视觉测量目前多采用像素级的边缘检测算法,不能满足高精度的测量需求。为提高零件尺寸测量精度,提出一种基于改进Canny算子的亚像素级零件尺寸测量方法。首先采用自适应中值-高斯滤波对零件图像进行滤波处理,在保留较多边缘信息的同时有效去除噪声;然后对图像进行梯度计算并通过二次插值寻找边缘点;其次通过编写的链接算法对边缘点进行链接并进行双阈值处理,提取到图像亚像素边缘轮廓;最后获取轮廓的最小外接矩形并得到零件尺寸。实验表明,该方法有效解决了零件轮廓的精确定位问题,测量误差在1个像素尺寸以内,在保证测量精度和测量效率的同时具有较高的稳定性。 展开更多
关键词 视觉测量 canny 亚像素边缘检测 二次插值 最小外接矩形
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
20
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部